### COMUNE DI TUORO SUL TRASIMENO

### **REGIONE UMBRIA**



### PROPRIETA': COMUNE DI TUORO SUL TRASIMENO

# Pott.ing. Walter Rubbiani

Via colle del vento, 68 – 06131 – Perugia E-mail info@rubbiani-ingegneria.it Cell. 349.8044902 P.I. 02533540544

## **OGGETTO:**

RISTRUTTURAZIONE EDILIZIA DELLA SCUOLA MATERNA DEL COMUNE DI TUORO S\T MEDIANTE DEMOLIZIONE E RICOSTRUZIONE DELL'ESISTENTE.

RIF. ART. 10 D.L. 12-09-2013 N. 104, CONVERTITO DALLA LEGGE 8 NOVEMBRE 2013 N. 128

| Progettista                | Collaboratori                | ELABORATI:                           |                     |                   |  |  |
|----------------------------|------------------------------|--------------------------------------|---------------------|-------------------|--|--|
| Ing. Walter Rubbiani       |                              | Relazione impianto termico e calcolo |                     |                   |  |  |
| P.I. Fiorenzo Brunelli     | - INDUSTRIALI E PERITY       | dispersioni energetiche ex L.10      |                     |                   |  |  |
| INCOCKIENI DELLA PHOVINCIA | ELETTROTE HOA - DESCANICA ES |                                      |                     |                   |  |  |
| Sezione A<br>N° A1866      | BRANZLI FIORENZO             | Codice pratica<br>1805A              | Elaborato nº<br>RIT | Data OTTOBRE 2018 |  |  |
| WALTER RUBBIANI            | OI PERUGIA                   |                                      |                     |                   |  |  |
| When harten                |                              |                                      |                     |                   |  |  |

| Esecutore              | Verificato             | Approvato       |
|------------------------|------------------------|-----------------|
| P.I. Fiorenzo Brunelli | P.I. Fiorenzo Brunelli | Walter Rubbiani |

### Dati Relativi all'impianto termico

## Descrizione generale dell'impianto termico

Impianto termico destinato al riscaldamento ambienti ed alla produzione dell'acqua calda.

#### Specifiche generatore di energia

Fluido termovettore : Acqua Combustibile utilizzato : Metano

- Caldaia murale a condensazione con camera stagna e tiraggio forzato per riscaldamento e produzione acqua calda sanitaria con le seguenti caratteristiche:
  - Potenza termica utile 96,80 KW
  - Accensione elettronica
  - Marca Riello
  - Tipo Condexa Pro 100 M

### Sistemi di regolazione dell'impianto termico

Regolazione ottenuta tramite valvole di zona o pompe di circolazione pilotate da termostati ambientali.

#### Sistemi di regolazione dell'impianto termico

Oltre alla regolazione generale ottenuta tramite valvole di zona o pompe di circolazione pilotate da termostati ambientali, verranno installate in ogni locale dispositivi per la regolazione automatica della temperatura ambiente (valvole termostatiche).

## Terminali di erogazione dell'energia termica

I dispositivi di emissione sono dei pannelli radianti a pavimento e ventilconvettori

- Pannelli a pavimento con tubazioni in polipropilene:
  - Passo 10
- Strisce isolanti di bordo in polietilene a cellule chiuse spessore 10 mm ed altezza 130 mm, non combustibili, occorrenti per la dilatazione perimetrale del pavimento
- Foglio protettivo in polietilene, spessore 0,2 mm con funzione di barriera vapore, da posarsi sopra lo strato isolante
- Rete metallica di supporto tubazione, con maglia in filo di acciaio liscio con spessore 3 mm protetto contro la corrosione, con piedini di rialzo
- Fissarete in acciaio plastificato, occorrenti per il fissaggio delle reti metalliche
- Clips in poliamide senza spigoli vivi per il fissaggio della tubazione, da applicarsi sulla rete
- Additivo per calcestruzzo, occorrente per rendere il massetto più compatto ed aumentarne il potere di inibizione
- Tubazione in polietilene ad alta densità, reticolato ad alta pressione secondo il brevetto ENGEL, con barriera contro la diffusione dell'ossigeno
- Collettore compatto di distribuzione in poliamide rinforzata con fibra di vetro, completo di materiale di fissaggio alla parete ed avente le seguenti caratteristiche:
- Valvole di mandata con regolazione micrometrica
- Detentori di ritorno termostatizzabili
- Termometro di mandata collettore

- Termometri di ritorno singoli circuiti
- Valvoline manuali di sfogo aria
- Attacchi collettore con compensatori flessibili
- Isolamento termico, fonoassorbente, autoestinguente, in polistirene estruso, specifico per l'isolamento di pavimenti riscaldati spessore 2 cm densità minima 27 Kg/mc
- Regolazione elettronica modulante della temperatura di mandata in funzione delle condizioni climatiche esterne, completa di sonda esterna, sonda di mandata e sonda di ritorno costituita da:
- Termostato limite per il disinserimento della pompa al raggiungimento della temperatura di taratura
- Servocomando termico per il movimento della valvola miscelatrice a tre vie
- Valvola miscelatrice a tre vie adatta all'accoppiamento del servocomando termico.

## Riepilogo Terminali di Erogazione

## PIANO TERRA IMPIANTO A PANNELLI RADIANTI

| Collettore | Watt  | Terminali di erogazione       | Passo |
|------------|-------|-------------------------------|-------|
|            |       |                               |       |
| CR1        | 7208  | Pannelli radianti a pavimento | 10    |
| CR2        | 10940 | Pannelli radianti a pavimento | 10    |
| CR3        | 18240 | Pannelli radianti a pavimento | 10    |
| CR4        | 12155 | Pannelli radianti a pavimento | 10    |
| CR5        | 15790 | Pannelli radianti a pavimento | 10    |
| CR6        | 13570 | Pannelli radianti a pavimento | 10    |
|            |       |                               |       |
| TOTALI     | 77903 |                               |       |

#### Caratteristiche delle tubazioni e isolamento

Tubazioni in rame spessore 1-1,5mm secondo UNI 1057/97 rivestito con isolante costituito da guaina flessibile di spessore secondo la tabella allegata con conducibilità termica a 40°C. non superiore a 0,042 W/mc classe 1 di reazione al fuoco.

| Diam  | etro in mm  | Spessore isolante in mm |                 |                |  |  |
|-------|-------------|-------------------------|-----------------|----------------|--|--|
| Rame  | multistrato | Linee orizzontali       | Linee verticali | Linee senza ΔT |  |  |
| Da 10 | Da 14       | 13                      | 7               | 4              |  |  |
| Da 12 | Da 14       | 13                      | 7               | 4              |  |  |
| Da 14 | Da 16       | 13                      | 7               | 4              |  |  |
| Da 16 | Da 18       | 13                      | 7               | 4              |  |  |
| Da 18 | Da 20       | 13                      | 7               | 6              |  |  |
| Da 22 | Da 26       | 19                      | 10              | 6              |  |  |
| Da 28 | Da 32       | 19                      | 10              | 6              |  |  |
| Da 35 | Da 40       | 19                      | 10              | 6              |  |  |
| Da 42 | Da 50       | 26                      | 13              | 8              |  |  |
| Da 54 | Da 63       | 26                      | 13              | 8              |  |  |

## Condotti di evacuazione dei prodotti della combustione

I prodotti della combustione del generatore di calore vengono evacuati mediante canna fumaria con uscita sulla sommità del tetto (Comma 9 art. 5 D.P.R. 26.8.93 n. 412).

### Impianto idrico e sanitario

Gli impianti idrici all'interno dei servizi igienici saranno realizzate con tubazioni in polipropilene, o in multistrato idonee per la distribuzione di acqua sanitaria calda e fredda, prodotte secondo UNI 8318 e 8321, pressione massima di esercizio 20 bar, rispondenti alle prescrizioni della Circolare n. 102 del 2.12.78 del Ministero della Sanità, posate sottotraccia con giunzioni saldate.

Le tubazioni dell'acqua calda saranno coibentate con guaina flessibile a cellule chiuse con coefficiente di conducibilità termica a 40°C. non superiore a 0,042 W/mc con classe 1 di reazione al fuoco.

All'interno di ogni bagno verranno installati rubinetti di chiusura in acciaio cromato.

Le tubazioni di adduzione ai vari bagni saranno del tipo "multistrato composito" (alluminio+PE per complessivi 5 strati con barriera all'ossigeno) rispondenti alla Circolare n. 102 del 2.12.78 del Ministero della Sanità, e forniti a rotoli per evitare giunzioni all'interno delle murature e delle pavimentazioni.

Le tubazioni esterne di adduzione saranno in polietilene posate entro scavi predisposti e rinfiancati con sabbia e stabilizzato.

Le tubazioni in polietilene saranno del tipo ad alta densità PE 100 prodotte secondo UNI 10910 rispondenti alle prescrizioni della Circolare n. 102 del 2.12.78 del Ministero della Sanità, dotate di Marchio di Qualità.

Le tubazioni degli scarichi dei bagni saranno in tubazioni di polipropilene autoestinguente posate sotto traccia all'interno dei bagni e delle cucine con giunzioni ad innesto, oppure in polietilene saldati, costruite secondo le norme UNI EN 1451 - 1 con diametri variabili 40 - 50 mm per i singoli scarichi lavelli e 110-125 mm per le colonne montanti.

All'esterno del fabbricato verranno utilizzate tubazioni in PVC rigido serie pesante UNI 10972 con giunzioni incollate e rinfiancati con sabbia o materiale stabilizzato.

- Servizi igienici saranno completi di:
  - Lavabo in porcellana vetrificata, colore bianco, completo di fori per rubinetteria, dimensioni 65 x 51 cm circa
  - o Colonna in porcellana vetrificata per lavabo, colore bianco;
  - Vaso igienico a cacciata in porcellana vetrificata colore bianco, con scarico a pavimento, completo di sedile e coperchio in materiale plastico pesante;
  - o Cassetta di risciacquamento completa di rubinetto a galleggiante compatto con il livello sonoro inferiore a 1,17 dB e guarnizione in gomma siliconata;
  - Bidet in porcellana vetrificata colore bianco con erogazione d'acqua monoforo;
  - Gruppo miscelatore monocomando cromato per bidet e lavabo realizzato in conformità alla norma UNI EN 200 – 246 – 248 corredato di raccordi e filtro;
  - o Coppia di rubinetti di arresto a cappuccio.

#### **RELAZIONE TECNICA**

## DI CUI ALL'ARTICOLO 28 DELLA LEGGE 9 GENNAIO 1991, N. 10, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI.

APPLICAZIONE DPR 59 del 10-06-2009 in attuazione ai DECRETI LEGISLATIVI 19 Agosto 2005, N. 192 e 29 Dicembre 2006, N. 311

# Opere relative ad edifici di nuova costruzione o a ristrutturazione di edifici nei casi previsti dall'Art. 3, Comma 2, lettere a) e b).

In ottemperanza a quanto disposto dall'Art. 11 del DLgs N. 192+311 in fase transitoria, il calcolo del fabbisogno di energia primaria, dei rendimenti impianto e della potenza di picco,è disciplinato dalla Legge n. 10 del 9 gennaio 1991 e relativo D.P.R. n. 412 del 26 agosto 1993.

Ai sensi del Decreto n°63 del 4 Giugno 2013, per il calcolo delle prestazioni energetiche degli edifici, si sono adottate le norme UNI TS 11300

Valutazione standard e di progetto:

Parte 1 : Determinazione fabbisogno energia termica dell'edificio per climatizzazione estiva ed invernale

Parte 2 : Determinazione dell'energia primaria e dei rendimenti per la climatizzazione invernale e per la produzione di acqua calda sanitaria

Parte 4 : Utilizzo di energie rinnovabili e di altri metodi di generazione per la climatizzazione invernale e per la produzione di acqua calda sanitaria
Raccomandazione CTI 14/2013

Altre procedure di calcolo adottate: UNI ENI ISO 13786 "Caratteristiche termiche dinamiche" UNI EN ISO 13788 "Prestazione igrotermica dei componenti e degli elementi per edilizia";

Opere relative a: **nuova costruzione**Località: **Tuoro sul Trasimeno** 

Loc. Tuoro sul Trasimeno

Tipo di edificio : Edificio di civile abitazione

Categoria: E.7

Committente : Comune di Tuoro

Progettisti: vedi pag. 2

La presente Relazione Tecnica ai sensi dell'Art. 28 Legge 10, 9-1-1991, viene consegnata in duplice copia prima o insieme, alla denuncia dell'inizio lavori relativi alle opere in oggetto.

La seconda copia viene restituita con l'attestazione dell'avvenuto deposito.

## 1) INFORMAZIONI GENERALI

| 1.1 - Comune di <u>Tuoro sul Trasimeno (PERUGIA)</u>                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2 - Progetto per la realizzazione di<br><u>Edificio di civile abitazione. nuova costruzione</u>                                                                                                                                                                                                         |
| 1.3 - sito in <u>Tuoro sul Trasimeno</u><br><u>Loc. Tuoro sul Trasimeno</u>                                                                                                                                                                                                                               |
| 1.4 - Concessione edilizia n del                                                                                                                                                                                                                                                                          |
| 1.5 - Classificazione dell'edificio: <i>E.7 edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili</i>                                                                                                                                                                                  |
| 1.6 - Numero delle unita' abitative: <u>I</u>                                                                                                                                                                                                                                                             |
| 1.7 - Committente: <u>Comune di Tuoro</u>                                                                                                                                                                                                                                                                 |
| 1.8 - Progettista degli impianti termici: <u>Fiorenzo Brunelli</u>                                                                                                                                                                                                                                        |
| 1.9 - Progettista dell'isolamento termico dell'edificio:<br><u>Fiorenzo Brunelli</u>                                                                                                                                                                                                                      |
| 1.10 - Direttore dei lavori degli impianti termici:                                                                                                                                                                                                                                                       |
| 1.11 - Direttore dei lavori dell'isolamento termico dell'edificio:                                                                                                                                                                                                                                        |
| 1.12 - L'edificio rientra tra quelli di proprietà pubblica o adibiti a uso pubblico ai fini dell'utilizzo delle fonti rinnovabili di energia previste dall'art.5 comma 15 del decreto del Presidente della Repubblica del 26 agosto 1993, n° 412 e del comma 14 (allegato I) del decreto legislativo 192: |
| □Sì <b>≥</b> No                                                                                                                                                                                                                                                                                           |

## 2) FATTORI TIPOLOGICI DELL'EDIFICIO

| I segue | enti elementi tipologici (contrassegnati) sono forniti in allegato:                                                                                |              |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ×       | 2.1 - piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali                                     | )            |
|         | 2.2 - prospetti e sezioni degli edifici con evidenziazione di eventuali sistemi di protezione solare                                               |              |
|         | 2.3 - elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari |              |
| 3) PA   | RAMETRI CLIMATICI DELLA LOCALITA'                                                                                                                  |              |
| 3.1 - 6 | fradi-giorno [GG] :                                                                                                                                | <u>2104</u>  |
| 3.2 - T | emperatura minima di progetto dell'aria esterna (UNI5364) [°C] :                                                                                   | <u>-2</u>    |
| 4) DA   | <u> FI TECNICO-COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE S</u>                                                                                    | TRUTTURE     |
| 4.1 - V | olume degli ambienti al lordo delle strutture che li delimitano (V) [m³] :                                                                         | <u> 2616</u> |
| 4.2 - S | uperficie esterna che delimita il volume (S) [m²] :                                                                                                | <u> 1811</u> |
| 4.3 - R | apporto S/V [m-1]:                                                                                                                                 | 0.692        |
| 4.4 - S | uperficie utile dell'edificio [m²] :                                                                                                               | 601.68       |
| 4.5 - V | 'alori di progetto della temperatura interna [°C] :                                                                                                | 20           |
| 4.6 - V | alori di progetto dell'umidita' interna [%] :                                                                                                      | <u>50</u>    |

## 5) DATI RELATIVI AGLI IMPIANTI (Relazione tecnica allegata)

### 5.1.b.4 - Rendimento termico utile (o di combustione per generatori ad aria calda ) al 100% di Pn:

5.1.b.4.1 - valore di progetto [%] 98.0

5.1.b.4.2 - valore minimo prescritto [%]  $\underline{91 + 1 \cdot log Pn = 92.9}$ 

5.1.b.4.3 - verifica <u>a norma di legge</u>

#### 5.1.b.5 - Rendimento termico utile ( o di combustione per generatori ad aria calda ) al 30% di Pn:

5.1.b.5.1 - valore di progetto [%] <u>107.0</u>

5.1.b.5.2 - valore minimo prescritto [%]  $\underline{97 + 1 \cdot log Pn} = \underline{98.9}$ 

5.1.b.5.3 - verifica <u>a norma di legge</u>

## 6) PRINCIPALI RISULTATI DEI CALCOLI

## Note in ottemperanza al DL192

6.a) Involucro edilizio e ricambi d'aria

6.a.1 - Caratteristiche termiche, igrometriche e di massa superficiale dei componenti opachi dell'involucro edilizio. Confronto con i valori limite.

(vedere tabelle allegate e paragrafo 6.a.5).

6.a.2 - Caratteristiche termiche dei componenti finestrati dell'involucro edilizio. Classe di permeabilità all'aria dei serramenti esterni. Confronto con i valori limite.

(vedere tabelle allegate e paragrafo 6.a.5).

- 6.a.3 Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate :
- 6.a.4 Attenuazione dei ponti termici (provvedimenti e calcoli):

6.a.5 - Confronto trasmittanza termica con i valori limite (tabelle 2,3 e 4 - Allegato C) :

| Codice  | Tipo           | Esposizione    | Ms(kg/m²)  | U(W/m²K) | Verifica | Limite  |
|---------|----------------|----------------|------------|----------|----------|---------|
| 142 P.E | verticale      | Esterno        | 108.7 (NO) | 0.181    | NR       | U<0.34  |
|         | opaca          |                |            |          |          |         |
| 205 S.E | serramento     | Esterno        | 34.0       | 1.693    | NR       | U<2.20  |
| 205 S.E | vetro          | Esterno        | 34.0       | 1.400    | NR       | U<1.70  |
| 221 S.E | non riscaldati | Esterno        | 32.0       | 2.941    | NR       | U< 0.80 |
| 313 P.I | verticale      | Non riscaldati | 270.0      | 0.509    | NR       | U<0.34  |
|         | opaca          |                |            |          |          |         |
| 517 PAV | orizzontale    | T1             | 650.3      | 0.290    | NR       | U<0.33  |
|         | opaca          |                |            |          |          |         |
| 623 SOF | orizzontale    | Esterno        | 272.3      | 0.257    | NR       | U<0.30  |
|         | opaca          |                |            |          |          |         |
| 627 SOF | orizzontale    | Esterno        | 80.5 (NO)  | 0.317    | NR       | U<0.30  |
|         | opaca          |                |            |          |          |         |

6.a.6 - Trasmittanza termica (U) degli elementi divisori tra alloggi o unità immobiliari confinanti (confronto con il valore limite):

vedere tabella paragrafo 6.a.5 e dettaglio CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE alla riga con esposizione TF

6.a.7 - Verifica termigrometrica (vedere tabelle allegate)

| 6.a.8.1 - valore massimo risultante dal progetto (Cd) : 0.254                                                    |
|------------------------------------------------------------------------------------------------------------------|
| 6.a.8.2 - valore massimo consentito dal DM 30-7-86 (CdL) : <u>0.628</u>                                          |
| 6.a.8.3 - verifica: <i>non richiesta</i>                                                                         |
| 6.a.8.4 - riduzione percentuale del Cd rispetto al CdL: <u>59.5 %</u>                                            |
| 0.a.o.4 - Hadzione percentagie del ed rispetto di edel. 37.5 76                                                  |
| 6.a.9 - Numero di volumi d'aria ricambiati in un'ora (valore medio nelle 24 ore [h-1]) :                         |
| 6.a.9.1 - zona: unica                                                                                            |
| 6.a.9.2 - valore di progetto: 0.5                                                                                |
| 6.a.9.3 - valore minimo da norme: 0.5                                                                            |
| 0.a.5.5 Valore minimo da norme                                                                                   |
| 6.a.10 - Portata aria ricambio (solo nei casi di ventilazione meccanica controllata) [m³/h]: <i>Non prevista</i> |
|                                                                                                                  |
| 6.a.11 - Portata aria attraverso apparecchiature di recupero [m³/h] : <i>Non prevista</i> .                      |
|                                                                                                                  |
| 6.a.12 - Rendimento termico delle apparecchiature di recupero (se previste): <i>Non richiesto</i> .              |
|                                                                                                                  |
| 6.b) Valore dei rendimenti medi stagionali di progetto e limite [%] :                                            |
| 6.b.1 - Rendimento di produzione di progetto :                                                                   |
|                                                                                                                  |
| 6.b.2 - Rendimento di regolazione di progetto : 99.0                                                             |
| 6.b.3 - Rendimento di distribuzione di progetto : 99.7                                                           |
| 6.b.4 - Rendimento di emissione di progetto : 99.0                                                               |
| 6.b.5 - Rendimento globale di progetto : 95.9                                                                    |
| 6.b.6 - Rendimento globale limite [%] : 80.8                                                                     |
| 6.c) Indice di prestazione energetica per la climatizzazione invernale                                           |
| ove) mande at presentations energetten per in enumerations in termine                                            |
| 6.c.1 - Metodo di calcolo : <u>UNITS 11300</u>                                                                   |
| 6.c.2 - Valore di progetto (EPci): 6.8 kWh/m³anno                                                                |
| 6.c.3 - Valore limite Tabella 1-Allegato C (EPciL): 18.7 kWh/m³anno                                              |
| 6.c.4 - Verifica: <u>a norma di legge</u>                                                                        |
| 6.c.5 - Riduzione percentuale dell'EPci rispetto all'EPciL : - 63.5 %                                            |
|                                                                                                                  |
| 6.c.6 - Fabbisogno di combustibile: <u>1858 Nm³/anno</u>                                                         |
| 6.c.7 - Fabbisogno di energia elettrica da rete [kWhe] :0                                                        |
| 6.c.8 - Fabbisogno di energia elettrica da produzione locale [kWhe] : 143                                        |
| o.e.o I abbisogno di energia elettirea da produzione locale [k w ne] .                                           |
| 6.d) Indice di prestazione energetica normalizzato per la climatizzazione invernale                              |
| 6.d.1 - Valore di progetto [kJ/m³GG]:                                                                            |
| 6.e) Indice di prestazione energetica per la produzione di acqua calda sanitaria                                 |
|                                                                                                                  |
| 6.e.1 - Fabbisogno di combustibile:                                                                              |
| 6.e.2 - Fabbisogno di energia elettrica da rete [kWhe]:0                                                         |
| 6.e.3 - Fabbisogno di energia elettrica da produzione locale [kWhe]:0                                            |
| 6.f) Impianti solari termici per la produzione di acqua calda sanitaria                                          |
| 6 f 1 Parcentuale di conertura dal fabbicagno annuo:                                                             |
| 6.f.1 - Percentuale di copertura del fabbisogno annuo:                                                           |

| · \  | т .     | 4. 6     | 114 •     | ٠ |
|------|---------|----------|-----------|---|
| 6.91 | Imnia   | nti toi  | tovoltaic | 1 |
| U.S. | TIIIPIA | 1111 101 | uvvuitait |   |

6.g.1 - Percentuale di copertura del fabbisogno annuo:

## 6.h) - Indice di prestazione termica per la climatizzazione estiva o il raffrescamento:

Valore di progetto (Epe,invol): 8.7 kWh/m³anno

Valore limite (Epe,invol,L): 10.0 kWh/m³anno

## 6.i) - Limitazione fabbisogno energetico per la climatizzazione estiva :

6.i.1 La prescrizione del pto 18.a (DPR 59):

6.i.2 La prescrizione del pto 18.b (DPR 59) : vedi allegato Ms-YIE

# 7) ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi,in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico:

Nessuna deroga

# 8) VALUTAZIONI SPECIFICHE PER L'UTILIZZO DELLE FONTI RINNOVABILI DI ENERGIA

Indicare le tecnologie che, in sede di progetto, sono state valutate ai fini del soddisfacimento del fabbisogno energetico mediante ricorso a fonti rinnovabili di energia o assimilate

Presente impianto fotovoltaico costituito da n. 20 moduli fotovoltaici. Potenza impianto 6 Kw.

## 9. ALTRA DOCUMENTAZIONE ALLEGATA (per quanto applicabile)

APPENDICE A: relazione contenente il calcolo dettagliato delle dispersioni di picco, del calcolo convenzionale e del rendimento globale:

- Dati generali di progetto
- Calcolo dispersioni
- Caratteristiche termiche igrometriche strutture
- Dettaglio analitico riscaldamento e raffrescamento
- Calcoli energia primaria riscaldamento e acs
- Ulteriori indicazioni per ridurre fenomeni di condensa
- Piante

## Descrizione generale dell'impianto termico

- Specifiche generatore di energia
- Sistemi di regolazione dell'impianto termico
- Terminali di erogazione dell'impianto termico
- Riepilogo Terminali di Erogazione
- Caratteristiche delle tubazioni e isolamento
- Condotti di evacuazione dei prodotti della combustione
- Impianto idrico e sanitario
- Adduzione gas
- Elaborati grafici
- Schema impianto termico
- Particolari

<u>Dichiarazione di conformità</u> <u>Dichiarazione di rispondenza Tecnico</u>

#### ULTERIORI INDICAZIONI PER RIDURRE FENOMENI DI CONDENSA

#### Ricambi d'aria

L'obiettivo è quello di garantire una ventilazione degli ambienti che consenta di mantenere un elevato grado di salubrità dell'aria, minimizzando al contempo i rischi di comparsa di muffe in caso di elevata produzione di vapore acqueo e di formazione di condensazione interstiziale che rende i materiali da costruzione più conducibili.

Per gli edifici residenziali la norma prevede un ricambio paria a 0,5 ricambi/ora, La UNI EN 15251 del 2008 innalza questo valore addirittura a 0,6-0,7 ricambi/ora. Valori di ricambio inferiori a 0,5 ricambi/ora non sono idonei per il controllo della qualità ambientale e della tutela del manufatto edilizio.

Il controllo dei valori di ricambi d'aria sopra riportati dipende prevalentemente dal comportamento corretto o meno dell'utente finale che può intervenire mediante l'apertura degli infissi. Per questa ragione nei casi in cui non sia possibile garantire tale ricambio minimo, è consigliabile il ricorso a sistemi di ventilazione meccanica controllata.

È comunque consigliabile installare almeno un deumidificatore per ogni 60 mq di superficie in modo da tenere sotto controllo in tutti i periodi dell'anno il valore percentuale dell'umidità.



## Comitato Termotecnico Italiano Energia e Ambiente

20124 Milano – Italy Via Scarlatti, 29 Tel. +39 02 2662651 Fax +39 02 26626550 cti@cti2000.it www.cti2000.it

> C.F. P.I. 11494010157

Ente Federato all'UNI per l'unificazione nel settore termotecnico

Fondato nel 1933 Sotto il Patrocinio del CNR

Riconosciuto dal MAP con D.D. del 4.6.1999 Iscritto nel Registro delle Persone Giuridiche Col n. 604

W





CERTIFICATO N. 036 Rilasciato a:

Watts Industries Italia S.r.l Via Brenno, 21 20046 Biassono MI P.I. 01742290214 – prot. N.38

Il Comitato Termotecnico Italiano Energia e Ambiente

**ATTESTA** 

che il software applicativo STIMA10/TFM V. 8

È conforme alle norme UNI TS 11300-4: 2012 in base al regolamento di applicazione

Il Presidente Prof. Ing. Cesare Boffa

Milano, 08 febbraio 2013

Il sottoscritto Ing. Walter Rubbiani, iscritto all'ordine degli ingegneri n. A1866, essendo a conoscenza delle sanzioni previste dall'art. 15 commi 1 e 2, del decreto legislativo di attuazione della direttiva 2002/91/CE

### dichiara

sotto la propria personale responsabilità che:

Il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto attuativo della direttiva 2002/91/CE;

a) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data, 26 novembre 2018

Il Progettista

| DATI di PROGE                                        | TTO                  |
|------------------------------------------------------|----------------------|
|                                                      |                      |
| Altitudine                                           | [m] <b>309</b>       |
| Latitudine                                           | 43°12'               |
| Longitudine                                          | 12°4 '               |
| Temperatura esterna T                                | <u>e</u> [°C] -2     |
| Località di riferimento per temperatura esterna      | PERUGIA              |
| Gradi giorno                                         | [°C•24h] <b>2104</b> |
| Località di riferimento per gradi giorno             | PERUGIA              |
| Zona climatica                                       | E                    |
| Velocità del vento media giornaliera [media annuale] | [m/s] <b>1.4</b>     |
| Direzione prevalente del vento                       | NE                   |
| Località di riferimento del vento                    |                      |
| Zona vento                                           | 2                    |
| Località rif. irradiazione                           | ;                    |

| Irradiazione globale su superficie verticale (MJ/m²) |     |            |          |            |        |            |          |            |      |      |      |
|------------------------------------------------------|-----|------------|----------|------------|--------|------------|----------|------------|------|------|------|
| mese                                                 | N   | NNE<br>NNW | NE<br>NW | ENE<br>WNW | E<br>W | ESE<br>WSW | SE<br>SW | SSE<br>SSW | S    | oriz | Te   |
| ottobre                                              | 3.1 | 3.3        | 4.5      | 6.5        | 8.7    | 10.8       | 12.5     | 13.7       | 14.4 | 11.4 | 18.7 |
| Ollopie                                              |     |            |          |            |        |            |          |            |      |      |      |
| novembre                                             | 2.1 | 2.1        | 2.4      | 3.5        | 5.0    | 6.6        | 8.2      | 9.6        | 10.3 | 6.3  | 14.7 |
| dicembre                                             | 1.7 | 1.7        | 1.8      | 2.5        | 3.7    | 5.0        | 6.4      | 7.7        | 8.2  | 4.6  | 11.0 |
| gennaio                                              | 1.9 | 1.9        | 2.1      | 3.0        | 4.4    | 5.9        | 7.4      | 8.8        | 9.4  | 5.5  | 9.2  |
| febbraio                                             | 2.7 | 2.7        | 3.3      | 4.5        | 5.9    | 7.3        | 8.5      | 9.5        | 10.1 | 7.9  | 9.6  |
| marzo                                                | 3.9 | 4.3        | 5.5      | 7.2        | 8.8    | 10.1       | 10.8     | 11.2       | 11.4 | 12.3 | 11.5 |
| aprile                                               | 5.5 | 6.5        | 8.2      | 9.9        | 11.2   | 11.9       | 11.7     | 11.1       | 10.5 | 16.6 | 14.4 |

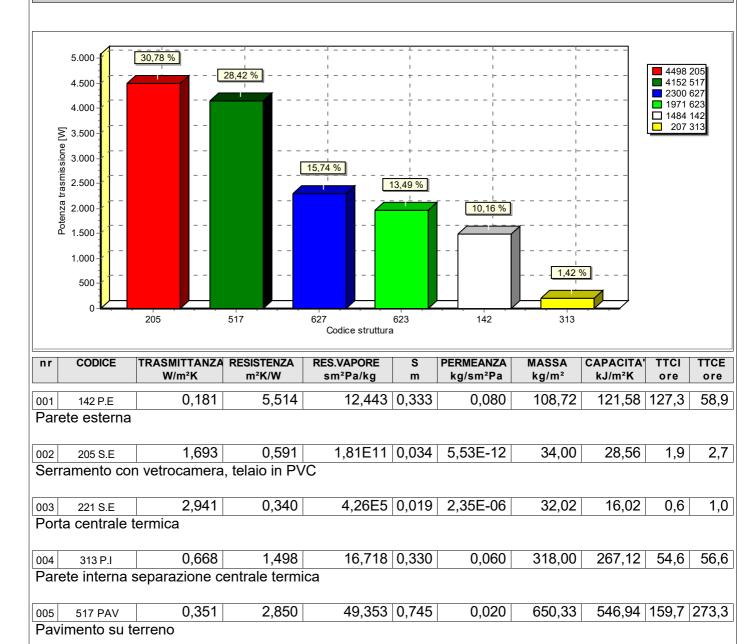
| Inizio riscaldamento             |    |          | 15-10           |
|----------------------------------|----|----------|-----------------|
| Fine riscaldamento               |    |          | 15-04           |
| Durata periodo di riscaldamento  | р  | [giorno] | 183             |
| Ore giornaliere di riscaldamento |    | [ore]    | 14              |
| Situazione esterna :             |    | in picco | olo agglomerato |
| Temperatura aria ambiente        | Ta | [°C]     | 20.0            |
| Umidità interna                  | Ui | [%]      | 50.0            |

Classe di permeabilità all'aria dei serramenti esterni:

(si veda singola struttura finestrata)

|                       | RIEPILOGO | DISPERSI | ONI   |       |       |         |
|-----------------------|-----------|----------|-------|-------|-------|---------|
| GLOBALE EDIFICIO      | 1810.5    | 2616.0   | 0.692 | 0.254 | 0.628 | 21561   |
| Appart/zona/ambiente  | A         | volume   | S/V   | Cdr   | Cdl   | dispers |
| Piano/Scala: 01 Terra |           |          |       |       |       | 21561   |
| 0101 Scuola           | 1810.5    | 2616.0   | 0.692 |       |       | 21561   |
| 01 Unico              | 1810.52   | 2616.00  | 0.692 |       |       | 21561   |

## CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE


AMBIENTE: 010101 Unico

Te = -2 Ta = 20 
 q
 ric
 largh
 lungh
 altez
 volume
 dispvol

 1
 0.5
 30.00
 21.80
 4.00
 2616.0
 6949

| nr       | Co-str             | q             | es     | U            | dt       | lungh         | al/la        | Α             | A•U•dt           | a.es | disptra    |
|----------|--------------------|---------------|--------|--------------|----------|---------------|--------------|---------------|------------------|------|------------|
| 01       | 142 P.E            | 1             | N      | 0.18         | 22       | 25.00         | 3.30         | 65.55         | 261.02           | 1.20 | 313        |
| 02       | 205 S.E            | 2             | N      | 1.69         | 22       | 1.00          | 1.50         | 3.00          | 111.74           | 1.20 | 134        |
| 03       | 205 S.E            | 1             | N      | 1.69         | 22       | 2.80          | 1.50         | 4.20          | 156.43           | 1.20 | 188        |
| 04       | 205 S.E            | 1             | N      | 1.69         | 22       | 1.20          | 2.50         | 3.00          | 111.74           | 1.20 | 134        |
| 05       | 205 S.E            | 1             | N      | 1.69         | 22       | 1.20          | 1.50         | 1.80          | 67.04            | 1.20 | 80         |
| 06       | 205 S.E            | 2             | N      | 1.69         | 22       | 0.90          | 1.50         | 2.70          | 100.56           | 1.20 | 121        |
| 07       | 205 S.E            | 1             | N      | 1.69         | 22       | 0.90          | 2.50         | 2.25          | 83.80            | 1.20 | 101        |
| 80       | 142 P.E            | 1             | N      | 0.18         | 22       | 11.40         | 4.30         | 31.27         | 124.52           | 1.20 | 149        |
| 09       | 205 S.E            | 2             | N      | 1.69         | 22       | 1.00          | 2.50         | 5.00          | 186.23           | 1.20 | 223        |
| 10       | 205 S.E            | 1             | N      | 1.69         | 22       | 7.50          | 1.70         | 12.75         | 474.89           | 1.20 | 570        |
| 11       | 142 P.E            | 1             | E      | 0.18         | 22       | 8.20          | 3.30         | 19.11         | 76.10            | 1.15 | 88         |
| 12       | 205 S.E            | 2             | E      | 1.69         | 22       | 0.90          | 1.50         | 2.70          | 100.56           | 1.15 | 116        |
| 13       | 205 S.E            | 1             | E      | 1.69         | 22       | 0.90          | 2.50         | 2.25          | 83.80            | 1.15 | 96         |
| 14       | 205 S.E            | 1             | E      | 1.69         | 22       | 1.20          | 2.50         | 3.00          | 111.74           | 1.15 | 128        |
| 15       | 142 P.E            | 1             | E      | 0.18         | 22       | 9.00          | 3.90         | 35.10         | 139.77           | 1.15 | 161        |
| 16       | 142 P.E            | 1             | E      | 0.18         | 22       | 11.50         | 1.40         | 11.20         | 44.60            | 1.15 | 51         |
| 17       | 205 S.E            | 1             | E      | 1.69         | 22       | 7.00          | 0.70         | 4.90          | 182.51           | 1.15 | 210        |
| 18       | 142 P.E            | 1             | S      | 0.18         | 22       | 14.20         | 3.30         | 38.61         | 153.75           | 1.00 | 154        |
| 19       | 205 S.E            | 1             | S      | 1.69         | 22       | 1.70          | 1.50         | 2.55          | 94.98            | 1.00 | 95         |
| 20       | 205 S.E            | 1             | S      | 1.69         | 22       | 1.20          | 2.50         | 3.00          | 111.74           | 1.00 | 112        |
| 21       | 205 S.E            | 1             | S      | 1.69         | 22       | 1.80          | 1.50         | 2.70          | 100.56           | 1.00 | 101        |
| 22       | 142 P.E            | 1             | S      | 0.18         | 22       | 25.00         | 3.00         | 32.50         | 129.41           | 1.00 | 129        |
| 23       | 205 S.E            | 2             | S      | 1.69         | 22       | 1.00          | 2.50         | 5.00          | 186.23           | 1.00 | 186        |
| 24       | 205 S.E<br>142 P.E | 2             | S<br>S | 1.69         | 22<br>22 | 7.50          | 2.50         | 37.50         | 1396.73          | 1.00 | 1397       |
| 25       |                    | 1             | 1      | 0.18         |          | 11.30<br>7.00 | 1.50         | 12.05         | 47.98            | 1.00 | 48         |
| 26<br>27 | 205 S.E<br>142 P.E | <u>1</u> 1    | S<br>W | 1.69<br>0.18 | 22<br>22 | 13.90         | 0.70<br>3.30 | 4.90<br>42.87 | 182.51<br>170.71 | 1.00 | 183<br>188 |
| 28       | 205 S.E            | 2             | W      | 1.69         | 22       | 13.90         | 1.50         | 3.00          | 111.74           | 1.10 | 123        |
| 29       | 142 P.E            | 1             | W      | 0.18         | 22       | 9.00          | 3.90         | 35.10         | 139.77           | 1.10 | 154        |
| 30       | 142 P.E            | _ <u>†</u>    | W      | 0.18         | 22       | 11.50         | 1.40         | 11.20         | 44.60            | 1.10 | 49         |
| 31       | 205 S.E            | <del> </del>  | W      | 1.69         | 22       | 7.00          | 0.70         | 4.90          | 182.51           | 1.10 | 201        |
| 32       | 313 P.I            | <u>_</u>      | U1     | 0.51         | 11       | 12.10         | 3.00         | 36.30         | 207.26           | 1.00 | 207        |
| 33       | 517 PAV            | <u>_</u>      |        | 0.35         | 18       | 12.50         | 13.90        | 173.75        | 1078.40          | 1.00 | 1078       |
| 34       | 517 PAV            | 1             | T1     | 0.35         | 20       | 23.70         | 2.30         | 54.51         | 376.96           | 1.00 | 377        |
| 35       | 517 PAV            | <u>_</u>      |        | 0.35         | 19       | 10.50         | 9.50         | 99.75         | 661.16           | 1.00 | 661        |
| 36       | 517 PAV            | 1             |        | 0.35         | 20       | 3.90          | 5.80         | 22.62         | 161.35           | 1.00 | 161        |
| 37       | 517 PAV            | <u>_</u>      |        | 0.35         | 19       | 10.50         | 9.50         | 99.75         | 661.16           | 1.00 | 661        |
| 38       | 517 PAV            | <u>_</u>      | T1     | 0.35         | 17       | 22.20         | 9.00         | 199.80        | 1212.92          | 1.00 | 1213       |
| 39       | 623 SOF            | <u>'</u><br>1 | ' '    | 0.33         | 22       | 12.50         | 13.90        | 173.75        | 982.38           | 1.00 | 982        |
| 40       | 623 SOF            | 1             |        | 0.26         | 22       | 23.70         | 2.30         | 54.51         | 308.20           | 1.00 | 308        |
| 41       | 623 SOF            | 1             |        | 0.26         | 22       | 11.50         | 8.50         | 97.75         | 552.68           | 1.00 | 553        |
| 42       | 623 SOF            | <u>-</u>      |        | 0.26         | 22       | 3.90          | 5.80         | 22.62         | 127.89           | 1.00 | 128        |
| 43       | 627 SOF            | 1             |        | 0.32         | 22       | 11.30         | 11.50        | 129.95        | 906.27           | 1.00 | 906        |
| 44       | 627 SOF            | <u>-</u>      |        | 0.32         | 22       | 22.20         | 9.00         | 199.80        | 1393.41          | 1.00 | 1393       |
|          | TALI: dispvol      | •             | +      | (disptra     |          | =             |              | volume        |                  |      | .000       |
|          | 6949               |               |        | 1461         |          |               | 561 1810.    |               |                  |      |            |
|          |                    |               |        |              |          | <u></u>       |              |               | , ,,,,,          |      |            |

#### RIEPILOGO STRUTTURE UTILIZZATE



90,383 0,547

3,2E5 0,183

0,011

3,12E-06

272,29

80,50

237,80 | 131,8 | 125,6

52,3

57,2

124,95

623 SOF Copertura piana

627 SOF

006

007

0,257

0,317

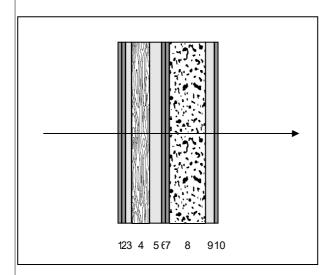
3,897

3,157

Nelle pagine successive sono riportate le tabelle relative alle:

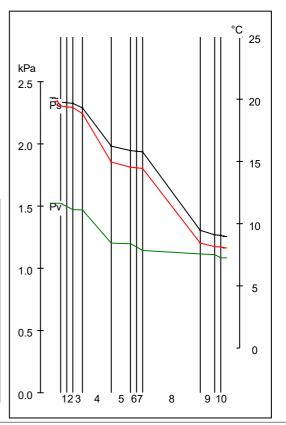
## CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI CARATTERISTICHE TERMICHE DEI COMPONENTI TRASPARENTI

### **LEGENDA**


| s                           | [m]                  | Spessore dello strato                                                 |
|-----------------------------|----------------------|-----------------------------------------------------------------------|
| λ                           | [W/mK]               | Conduttività termica del materiale                                    |
| С                           | [W/m²K]              | Conduttanza unitaria                                                  |
| ρ                           | [kg/m³]              | Massa volumica                                                        |
| $\delta$ a 10 <sup>12</sup> | [kg/msPa]            | Permeabilità di vapore nell'intervallo di umidità relativa 0-50 %     |
| δu 10 <sup>12</sup>         | [kg/msPa]            | Permeabilità di vapore nell'intervallo di umidità relativa 50-95 %    |
| R                           | [m²K/W]              | Resistenza termica dei singoli strati                                 |
| Ag                          | -<br>[m²]            | Area del vetro                                                        |
| Af                          | [m²]                 | Area del telaio                                                       |
| Lg                          | [m]                  | Lunghezza perimetrale della superficie vetrata                        |
| Ug                          | [W/m²K]              | Trasmittanza termica dell'elemento vetrato                            |
| Uf                          | [W/m <sup>2</sup> K] | Trasmittanza termica del telaio                                       |
| Ψl                          | [W/mK]               | Trasmittanza lineica (nulla in caso di singolo vetro)                 |
| Uw                          | [W/m²K]              | Trasmittanza termica totale del serramento                            |
|                             |                      |                                                                       |
| С                           | [J/(kg·K)]           | Capacità termica specifica                                            |
| δ                           | [m]                  | Profondità di penetrazione periodica di un'onda termica               |
| ξ                           | [-]                  | Rapporto tra lo spessore dello strato e la profondità di penetrazione |
| χ                           | $[J/(m^2K)]$         | Capacità termica areica                                               |
| Υ                           | $[W/(m^2K)]$         | Ammettenza termica dinamica                                           |
| Z <sup>mn</sup>             |                      | Elemento della matrice di trasmissione del calore                     |
| Zmn                         | [-]                  |                                                                       |
| Z <sup>11</sup>             | $[m^2 \cdot K/W]$    |                                                                       |
| Z <sup>12</sup>             | $[W/(m^2K)]$         |                                                                       |
| Z <sup>21</sup>             | [-]                  |                                                                       |
| T <sup>22</sup>             | [s]                  | Periodo delle variazioni                                              |
| ∆t                          | [s]                  | Variazione di tempo: anticipo (se positiva) o ritardo (se negativa)   |

## CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

#### TIPO DI STRUTTURA Parete esterna

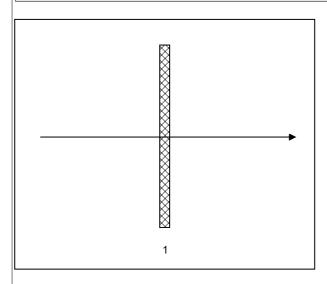

cod 142 P.E

|    | Massa [kg/m²]                                 | 108.7             | Capacità [kJ/m²K] | 121.6  | 3     |       | Type Ash | rae      | 0                           |                  |         |
|----|-----------------------------------------------|-------------------|-------------------|--------|-------|-------|----------|----------|-----------------------------|------------------|---------|
| N  | D                                             | escrizione        | strato            | S      |       | λ     | С        | ρ        | $\delta$ a 10 <sup>12</sup> | δ <b>u 10</b> 12 | R       |
|    | (da                                           | all'interno verso | o l'esterno)      | (m)    | (W/   | mK)   | (W/m²K)  | (kg/m³)  | (kg/msPa)                   | (kg/msPa)        | (m²K/W) |
| 1  | Lastra tipo Knauf (                           | GKF               |                   | 0,0125 | 0,    | 580   | 46,40    | 1200     | 17,0000                     | 17,0000          | 0,022   |
| 2  | Lastra tipo Knauf C                           | 0,0125            | 0,5               | 580    | 46,40 | 1200  | 17,0000  | 17,0000  | 0,022                       |                  |         |
| 3  | Intercapedine d'ari                           | 0,0200            |                   |        | 5,556 | 1,30  | 193,0000 | 193,0000 | 0,180                       |                  |         |
| 4  | Pannelli in lana di legno tipo Celenit FL/150 |                   |                   |        | 0,0   | 039   | 0,65     | 400      | 8,0000                      | 8,0000           | 1,538   |
| 5  | Intercapedine d'ari                           | ia                |                   | 0,0400 |       |       | 5,556    | 1,30     | 193,0000                    | 193,0000         | 0,180   |
| 6  | Lastra tipo Knauf C                           | GKF               |                   | 0,0125 | 0,5   | 580   | 46,40    | 1200     | 17,0000                     | 17,0000          | 0,022   |
| 7  | Lastra tipo Knauf C                           | GKF               |                   | 0,0125 | 0,5   | 580   | 46,40    | 1200     | 17,0000                     | 17,0000          | 0,022   |
| 8  | Pannelli semirigidi                           | i in lana di ro   | occia             | 0,1200 | 0,0   | 38    | 0,32     | 80       | 150,0000                    | 150,0000         | 3,158   |
| 9  | Intercapedine d'aria                          |                   |                   | 0,0300 |       |       | 5,556    | 1,30     | 193,0000                    | 193,0000         | 0,180   |
| 10 | Lastra Acquapann                              |                   | 0,0125            | 0,5    | 580   | 46,40 | 1200     | 17,0000  | 17,0000                     | 0,022            |         |
| SP | ESSORE TOTALE [                               | m]                |                   | 0,3325 |       |       |          |          |                             |                  |         |



| Conduttanza unitaria | 8     | Resistenza unitaria | 0,130 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  |       |
|                      |       |                     |       |
| Conduttanza unitaria | 25    | Resistenza unitaria | 0,040 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 0,181 | RESISTENZA TERMICA  | 5,514 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |

| <u>=====================================</u> |                            |              |              |           |        |  |  |  |
|----------------------------------------------|----------------------------|--------------|--------------|-----------|--------|--|--|--|
|                                              | CONDIZIONE                 | Ti(°C)       | Pi(Pa)       | Te(°C)    | Pe(Pa) |  |  |  |
| IN.                                          | IVERNALE: gennaio          | 20.0         | 1522         | 9.2       | 1084   |  |  |  |
|                                              | ESTIVA: agosto             | 25.3         | 1936         | 25.3      | 1936   |  |  |  |
|                                              | La struttura non è sog     | ondensa      |              |           |        |  |  |  |
| ×                                            | interstiziale; la differen | 61           |              |           |        |  |  |  |
|                                              | tra quella di saturazior   | ria [Pa]     |              |           |        |  |  |  |
|                                              | La struttura è soggetta    | a fenome     | ni di conde  | ensa;     |        |  |  |  |
| П                                            | la quantità stagionale     | di condens   | ato è pari a | a [kg/m²] |        |  |  |  |
| _                                            | (ammissibile ed evapo      | rabile nella | stagione     | estiva)   |        |  |  |  |
|                                              | La struttura non è sogo    | getta a fend | omeni di c   | ondensa   |        |  |  |  |
| X                                            | superficiale; la differen  | za minima    | di pressior  | ne tra    | 1133   |  |  |  |
|                                              | quella di saturazione e    | [Pa]         |              |           |        |  |  |  |
|                                              |                            |              |              |           |        |  |  |  |




## CARATTERISTICHE TERMICHE DEI COMPONENTI TRASPARENTI DELL'INVOLUCRO EDILIZIO

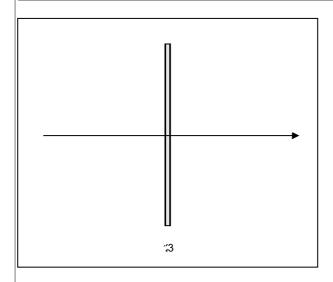
## TIPO DI STRUTTURA Serramento con vetrocamera, telaio in PVC

cod 205 S.E

|    | Massa [kg/m²]                  | 34.0 Capacità [kJ/m²K] | 28.6   | <b>;</b> |         |         |                             |                       |         |
|----|--------------------------------|------------------------|--------|----------|---------|---------|-----------------------------|-----------------------|---------|
| N  | Descrizione strato             |                        |        | λ        | С       | ρ       | $\delta$ a 10 <sup>12</sup> | $\delta$ u 10 $^{12}$ | R       |
|    | (dall'interno verso l'esterno) |                        |        | (W/mK)   | (W/m²K) | (kg/m³) | (kg/msPa)                   | (kg/msPa)             | (m²K/W) |
| 1  | Superfici vetrate co           | on vetro camera        | 0,0340 |          | 2,435   | 1000    | 0,0000                      | 0,0000                | 0,411   |
| SP | ESSORE TOTALE [I               | m]                     | 0,0340 |          |         |         |                             |                       |         |



| Conduttanza unitaria | 7     | Resistenza unitaria | 0,140 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  |       |
|                      |       |                     |       |
| Conduttanza unitaria | 25    | Resistenza unitaria | 0,040 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 1,693 | RESISTENZA TERMICA  | 0,591 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |

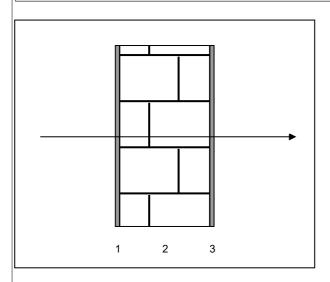

| Descrizione                        | Ag   | Af   | Lg   | Ug      | Uf      | Ψl     | Uw      |
|------------------------------------|------|------|------|---------|---------|--------|---------|
|                                    | (m²) | (m²) | (m)  | (W/m²K) | (W/m²K) | (W/mK) | (W/m²K) |
| Serramento singolo                 | 1.90 | 0.35 | 7.50 | 1.400   | 2.000   | 0.060  | 1.693   |
| Doppio serramento<br>e/o combinato |      |      |      |         |         |        |         |

## CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

## TIPO DI STRUTTURA Porta centrale termica

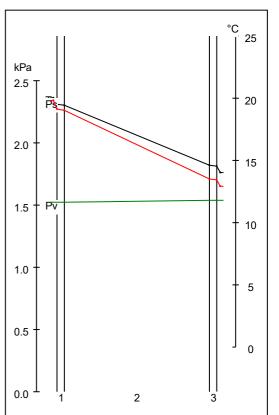
cod 221 S.E

|    | Massa [kg/m²]                                      | 32.0               | Capacità [kJ/m²K] | 16.0   | )     | Type Ash   | rae     | 1                           |                  |         |
|----|----------------------------------------------------|--------------------|-------------------|--------|-------|------------|---------|-----------------------------|------------------|---------|
| N  | D                                                  | Descrizione strato |                   |        | λ     | С          | ρ       | δ <b>a 10</b> <sup>12</sup> | δ <b>u 10</b> 12 | R       |
|    | (dall'interno verso l'esterno)                     |                    |                   |        | (W/mK | (W/m²K)    | (kg/m³) | (kg/msPa)                   | (kg/msPa)        | (m²K/W) |
| 1  | Lamiera di acciaio                                 | )                  |                   | 0,0020 | 52,00 | 0 26000,00 | 8000    | 0,0000                      | 0,0000           | 0,000   |
| 2  | Intercapedine d'aria non ventilata sp. 15 mm ,     |                    |                   |        |       | 5,882      | 1,30    | 193,0000                    | 193,0000         | 0,170   |
|    | superfici opache, flusso di calore orizzontale e/o |                    |                   |        |       |            |         |                             |                  |         |
|    | discendente UNI 6                                  |                    |                   |        |       |            |         |                             |                  |         |
| 3  | Lamiera di acciaio                                 | )                  |                   | 0,0020 | 52,00 | 0 26000,00 | 8000    | 0,0000                      | 0,0000           | 0,000   |
| SP | ESSORE TOTALE [                                    | m]                 |                   | 0,0190 |       | ·          | •       |                             |                  |         |




| Conduttanza unitaria | 8     | Resistenza unitaria | 0,130 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  |       |
|                      |       |                     |       |
| Conduttanza unitaria | 25    | Resistenza unitaria | 0,040 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 2,941 | RESISTENZA TERMICA  | 0,340 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |
|                      |       | •                   |       |

## CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

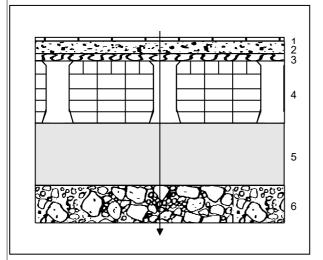

## **TIPO DI STRUTTURA** Parete interna separazione centrale termica cod 313 P.I

|    | Massa [kg/m²] 318.0 Capacità [kJ/m²K]                |        | 267.1 Type Ashrae |         |         | 0                           |                  |         |
|----|------------------------------------------------------|--------|-------------------|---------|---------|-----------------------------|------------------|---------|
| N  | Descrizione strato                                   | S      | λ                 | С       | ρ       | $\delta$ a 10 <sup>12</sup> | δ <b>u 10</b> 12 | R       |
|    | (dall'interno verso l'esterno)                       | (m)    | (W/mK)            | (W/m²K) | (kg/m³) | (kg/msPa)                   | (kg/msPa)        | (m²K/W) |
| 1  | Intonaco di calce e gesso                            | 0,0150 | 0,700             | 46,67   | 1400    | 18,0000                     | 18,0000          | 0,021   |
| 2  | Blocchi di grande formato                            | 0,3000 | 0,250             | 0,83    | 900     | 21,0000                     | 21,0000          | 1,200   |
| 3  | Intonaco di cemento, sabbia e calce 1800 per esterno | 0,0150 | 0,900             | 60,00   | 1800    | 9,3800                      | 9,3800           | 0,017   |
| SP | ESSORE TOTALE [m]                                    | 0,3300 |                   |         |         |                             |                  |         |



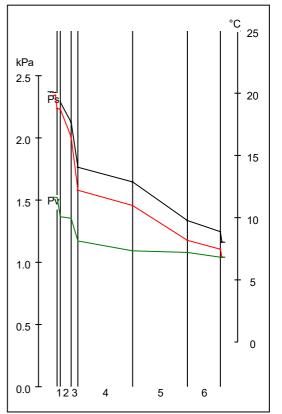
| Conduttanza unitaria | 8     | Resistenza unitaria | 0,130 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  |       |
|                      |       |                     |       |
| Conduttanza unitaria | 8     | Resistenza unitaria | 0,130 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 0,668 | RESISTENZA TERMICA  | 1,498 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |
|                      |       |                     |       |

|    | CONDIZIONE                                             | Ti(°C)       | Pi(Pa)       | Te(°C)    | Pe(Pa) |  |  |
|----|--------------------------------------------------------|--------------|--------------|-----------|--------|--|--|
| IN | IVERNALE: gennaio                                      | 20.0         | 1522         | 14.5      | 1538   |  |  |
|    | ESTIVA: agosto                                         | 25.3         | 1936         | 25.3      | 1936   |  |  |
|    | La struttura non è sogo                                | getta a fend | omeni di c   | ondensa   |        |  |  |
| ×  | interstiziale; la differen                             | za minima    | di pressio   | ne        | 171    |  |  |
|    | tra quella di saturazione e quella reale è pari a [Pa] |              |              |           |        |  |  |
|    | La struttura è soggetta                                | a fenome     | ni di conde  | ensa;     |        |  |  |
|    | la quantità stagionale                                 | di condens   | ato è pari a | a [kg/m²] |        |  |  |
|    | (ammissibile ed evapo                                  | rabile nella | stagione     | estiva)   |        |  |  |
|    | La struttura non è sogo                                | getta a fend | omeni di c   | ondensa   |        |  |  |
| ×  | superficiale; la differenza minima di pressione tra    |              |              |           |        |  |  |
|    | quella di saturazione e                                | quella rea   | ıle è pari a | [Pa]      |        |  |  |




## CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

#### TIPO DI STRUTTURA Pavimento su terreno

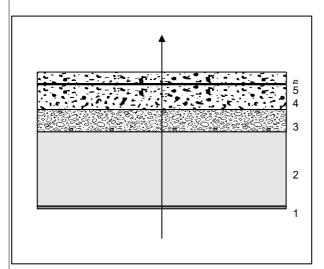

cod 517 PAV

|    | Massa [kg/m²]                                               | 650.3         | Capacità [kJ/m²K] | 546.9  | 9   |         | Type Ashrae |                             | 0                |          |       |
|----|-------------------------------------------------------------|---------------|-------------------|--------|-----|---------|-------------|-----------------------------|------------------|----------|-------|
| N  | Descrizione strato                                          |               | S                 | λ      | L . | С       | ρ           | $\delta$ a 10 <sup>12</sup> | δ <b>u 10</b> 12 | R        |       |
|    | (dall'interno verso l'esterno)                              |               | (m)               | (W/n   | nK) | (W/m²K) | (kg/m³)     | (kg/msPa)                   | (kg/msPa)        | (m²K/W)  |       |
| 1  | Gres                                                        |               |                   | 0,0150 | 1,7 | 00      | 113,33      | 2400                        | 0,9380           | 0,9380   | 0,009 |
| 2  | 2 Massetto autolivellante                                   |               |                   | 0,0500 | 0,1 | 30      | 2,60        | 250                         | 38,0000          | 38,0000  | 0,385 |
| 3  | 3 Polistirene espanso per posa impianto radiante            |               |                   | 0,0300 | 0,0 | 35      | 1,17        | 50                          | 1,6000           | 1,6000   | 0,857 |
| 4  | 4 Solaio di tipo predalles, senza soletta cls, laterizio 12 |               |                   | 0,2500 |     |         | 3,571       | 1500                        | 31,2500          | 31,2500  | 0,280 |
|    | cm, sp tot 25 cm;                                           | da 1500, flus | so ascendente (da |        |     |         |             |                             |                  |          |       |
|    | UNI 10355)                                                  |               |                   |        |     |         |             |                             |                  |          |       |
| 5  | Intercapedine d'aria flusso di calore orizzontale UNI       |               |                   | 0,2500 | 0,3 | 40      | 1,36        | 1,30                        | 193,0000         | 193,0000 | 0,735 |
|    | 6946                                                        |               |                   |        |     |         |             |                             |                  |          |       |
| 6  | Ciottoli e pietre frantumate sfuse ad alta densità          |               |                   | 0,1500 | 0,7 | 00      | 4,67        | 1500                        | 37,5000          | 37,5000  | 0,214 |
| SP | SPESSORE TOTALE [m]                                         |               |                   |        |     |         |             |                             |                  |          |       |



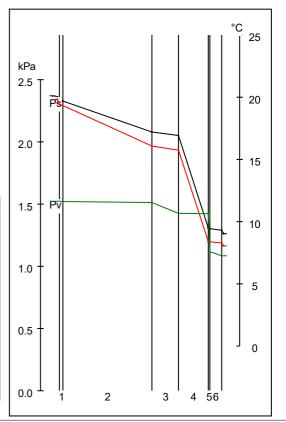
| Conduttanza unitaria | 6     | Resistenza unitaria | 0,170 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  |       |
|                      |       |                     |       |
|                      |       |                     |       |
| Conduttanza unitaria | 5     | Resistenza unitaria | 0,200 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 0,351 | RESISTENZA TERMICA  | 2,850 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |

|     | <u> </u>                                               |              |              |           |        |  |  |
|-----|--------------------------------------------------------|--------------|--------------|-----------|--------|--|--|
|     | CONDIZIONE                                             | Ti(°C)       | Pi(Pa)       | Te(°C)    | Pe(Pa) |  |  |
| IN. | IVERNALE: gennaio                                      | 20.0         | 1522         | 7.5       | 1040   |  |  |
|     | ESTIVA: agosto 18.0 1936 18.0                          |              |              |           |        |  |  |
|     | La struttura non è sog                                 | getta a fen  | omeni di c   | ondensa   |        |  |  |
| ×   | interstiziale; la differenza minima di pressione       |              |              |           |        |  |  |
|     | tra quella di saturazione e quella reale è pari a [Pa] |              |              |           |        |  |  |
|     | La struttura è soggetta                                | a fenome     | ni di conde  | ensa;     |        |  |  |
|     | la quantità stagionale                                 | di condens   | ato è pari a | a [kg/m²] |        |  |  |
|     | (ammissibile ed evapo                                  | rabile nella | stagione     | estiva)   |        |  |  |
|     | La struttura non è sog                                 | getta a fen  | omeni di c   | ondensa   |        |  |  |
| ×   | superficiale; la differenza minima di pressione tra    |              |              |           |        |  |  |
|     | quella di saturazione e                                | quella rea   | le è pari a  | [Pa]      |        |  |  |
|     |                                                        |              |              |           |        |  |  |




## CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

### TIPO DI STRUTTURA Copertura piana

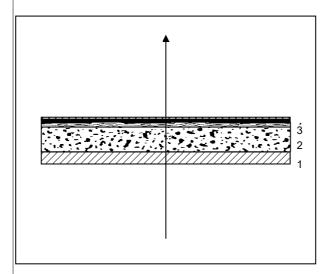

cod 623 SOF

|    | Massa [kg/m²]                                  | 272.3          | Capacità [kJ/m²K]        | 237.8  | 8   |         | Type Ashi | rae                         | 0                |          |       |
|----|------------------------------------------------|----------------|--------------------------|--------|-----|---------|-----------|-----------------------------|------------------|----------|-------|
| N  | Descrizione strato                             |                | S                        | 7      | λ   | С       | ρ         | $\delta$ a 10 <sup>12</sup> | δ <b>u 10</b> 12 | R        |       |
|    | (dall'interno verso l'esterno)                 |                | (m)                      | (W/    | mK) | (W/m²K) | (kg/m³)   | (kg/msPa)                   | (kg/msPa)        | (m²K/W)  |       |
| 1  | Pannelli in cartong                            | gesso (1200)   | con inerti di vario tipo | 0,0120 | 0,5 | 580     | 48,33     | 1200                        | 17,0000          | 17,0000  | 0,021 |
| 2  | Intercapedine d'ari                            | ia non ventila | ata, flusso di calore    | 0,3000 | 0,3 | 340     | 1,13      | 1,30                        | 193,0000         | 193,0000 | 0,882 |
|    | ascendente UNI 6946                            |                |                          |        |     |         |           |                             |                  |          |       |
| 3  | Lamiera grecata 5                              | 55+35mm        |                          | 0,0900 | 0,9 | 940     | 10,44     | 1800                        | 5,0000           | 6,2500   | 0,096 |
| 4  | Pannelli rigidi in fibra di vetro da 100 Kg/mc |                |                          | 0,1000 | 0,0 | )38     | 0,38      | 100                         | 150,0000         | 150,0000 | 2,632 |
| 5  | Cartone bitumato                               |                |                          | 0,0050 | 0,2 | 230     | 46,00     | 1100                        | 0,0800           | 0,0800   | 0,022 |
| 6  | copertura in ghiaia sfusa                      |                |                          | 0,0400 | 0,9 | 900     | 22,50     | 2000                        | 5,7500           | 5,7500   | 0,044 |
| SP | ESSORE TOTALE [                                | m]             |                          | 0,5470 |     |         |           |                             |                  |          |       |



| Conduttanza unitaria | 10    | Resistenza unitaria | 0,100 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  | ,     |
| •                    |       |                     |       |
| Conduttanza unitaria | 10    | Resistenza unitaria | 0,100 |
| superficie esterna   |       | superficie esterna  |       |
|                      |       |                     |       |
| TRASMITTANZA         | 0,257 | RESISTENZA TERMICA  | 3,897 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |

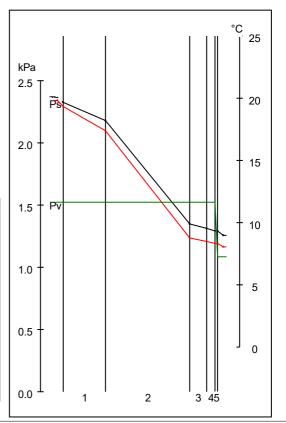
|     | CONDIZIONE                                             | Ti(°C)       | Pi(Pa)       | Te(°C)    | Pe(Pa) |  |
|-----|--------------------------------------------------------|--------------|--------------|-----------|--------|--|
| IN. | IVERNALE: gennaio                                      | 20.0         | 1522         | 9.2       | 1084   |  |
|     | ESTIVA: agosto                                         | 25.3         | 1936         | 25.3      | 1936   |  |
|     | La struttura non è sogo                                | getta a fend | omeni di c   | ondensa   |        |  |
|     | interstiziale; la differen                             | za minima    | di pressio   | ne        |        |  |
|     | tra quella di saturazione e quella reale è pari a [Pa] |              |              |           |        |  |
|     | La struttura è soggetta                                | a fenome     | ni di conde  | ensa;     |        |  |
| ×   | la quantità stagionale                                 | di condens   | ato è pari a | a [kg/m²] | 0.058  |  |
|     | (ammissibile ed evapo                                  | rabile nella | stagione     | estiva)   |        |  |
|     | La struttura non è soggetta a fenomeni di condensa     |              |              |           |        |  |
| ×   | superficiale; la differenza minima di pressione tra    |              |              |           |        |  |
|     | quella di saturazione e                                | quella rea   | le è pari a  | [Pa]      |        |  |




### CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

#### TIPO DI STRUTTURA Copertura calda in legno

cod 627 SOF


|    | Massa [kg/m²]                                    | 80.5               | Capacità [kJ/m²K]    | 125.   | 0 [  | Type Ashrae |          | 0         |                             |                  |       |
|----|--------------------------------------------------|--------------------|----------------------|--------|------|-------------|----------|-----------|-----------------------------|------------------|-------|
| N  | D                                                | Descrizione strato |                      | S      | λ    |             | С        | ρ         | $\delta$ a 10 <sup>12</sup> | δ <b>u 10</b> 12 | R     |
|    | (dall'interno verso l'esterno)                   |                    | (m)                  | (W/n   | ıK)  | (W/m²K)     | (kg/m³)  | (kg/msPa) | (kg/msPa)                   | (m²K/W)          |       |
| 1  | Doppio tavolato Le                               | egno di abete      | e con flusso termico | 0,0500 | 0,1  | 20          | 2,40     | 450       | 4,5000                      | 6,0000           | 0,417 |
|    | perpendicolare alle fibre                        |                    |                      |        |      |             |          |           |                             |                  |       |
| 2  | 2 Pannelli semirigidi in fibre minerali da rocce |                    |                      | 0,1000 | 0,0  | 42          | 0,42     | 40        | 150,0000                    | 150,0000         | 2,381 |
|    | feldspatiche da 40                               | Kg/mc              |                      |        |      |             |          |           |                             |                  |       |
| 3  | Pannello OSB                                     |                    |                      | 0,0200 | 0,2  | 00          | 10,00    | 900       | 3,1300                      | 3,1300           | 0,100 |
| 4  | 4 Guaina                                         |                    |                      | 0,0100 | 0,1  | 70          | 17,00    | 1200      | 0,0094                      | 0,0094           | 0,059 |
| 5  | 5 Lamiera di acciaio                             |                    |                      | 0,0030 | 52,0 | 000         | 17333,33 | 8000      | 0,0000                      | 0,0000           | 0,000 |
| SP | ESSORE TOTALE [I                                 | m]                 |                      | 0,1830 |      |             |          |           |                             |                  |       |

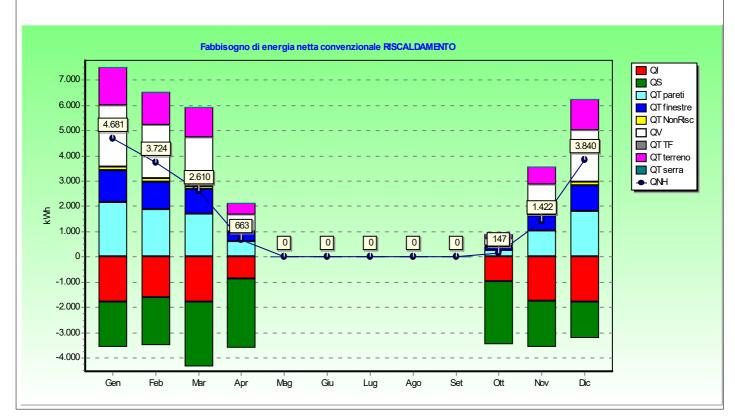


| Conduttanza unitaria | 10    | Resistenza unitaria | 0,100 |
|----------------------|-------|---------------------|-------|
| superficie interna   |       | superficie interna  | ,     |
| -                    |       |                     |       |
| Conduttanza unitaria | 10    | Resistenza unitaria | 0,100 |
| superficie esterna   |       | superficie esterna  | ,     |
|                      |       |                     |       |
| TRASMITTANZA         | 0,317 | RESISTENZA TERMICA  | 3,157 |
| TOTALE[W/m²K]        |       | TOTALE[m²K/W]       |       |

### <u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

CONDIZIONE Ti(°C) Pi(Pa) Te(°C) Pe(Pa) INVERNALE: gennaio 20.0 1522 9.2 1084 ESTIVA: agosto 25.3 1936 25.3 1936 La struttura non è soggetta a fenomeni di condensa interstiziale; la differenza minima di pressione tra quella di saturazione e quella reale è pari a [Pa] La struttura è soggetta a fenomeni di condensa; 0.115 (ammissibile ed evaporabile nella stagione estiva) La struttura non è soggetta a fenomeni di condensa superficiale; la differenza minima di pressione tra 1121 X quella di saturazione e quella reale è pari a [Pa]

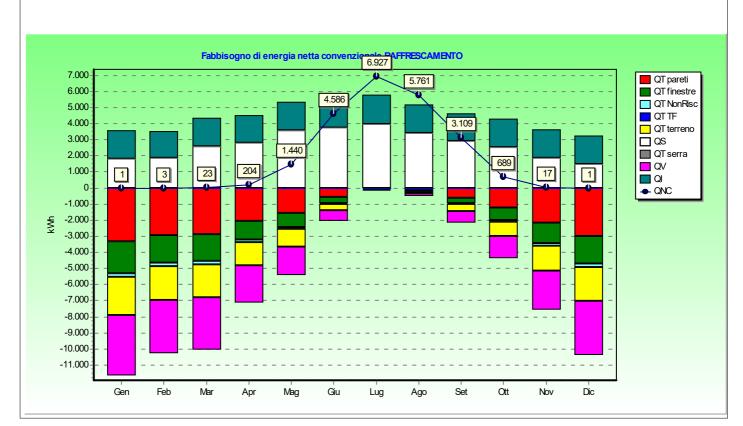



| DPR 59 - Par. 18.b                                              |                  |     |       |  |  |  |
|-----------------------------------------------------------------|------------------|-----|-------|--|--|--|
| LIMITAZIONE FABBISOGNO ENERGETICO PER LA CLIMATIZZAZIONE ESTIVA |                  |     |       |  |  |  |
| Irradianza sul piano orizzontale solare                         | I <sub>m,s</sub> | 295 | W/m²  |  |  |  |
| Massa superficiale                                              | M <sub>s</sub>   |     | kg/m² |  |  |  |
| Modulo trasmittanza termica periodica                           | Y <sub>IE</sub>  |     | W/m²K |  |  |  |

| Parete              | M <sub>s</sub> | Y <sub>E</sub> | Verifica |
|---------------------|----------------|----------------|----------|
| P.E 142 verticale   | 109            | 0.03           | SI       |
| SOF 623 orizzontale | 272            | 0.03           | SI       |
| SOF 627 orizzontale | 81             | 0.19           | SI       |

# Dettaglio analitico e grafico del fabbisogno di energia netta convenzionale (in regime di RISCALDAMENTO)

| ENERGIA IN [MJ]                     | Gennaio | Febbraio | Marzo | Aprile | Ottobre | Novembre | Dicembre | Totali |
|-------------------------------------|---------|----------|-------|--------|---------|----------|----------|--------|
| QT strutture opache                 | 7743    | 6735     | 6096  | 2172   | 920     | 3681     | 6454     | 33802  |
| QT finestre                         | 4523    | 3934     | 3561  | 1268   | 538     | 2150     | 3770     | 19745  |
| QT non riscaldati                   | 562     | 489      | 442   | 158    | 67      | 267      | 468      | 2452   |
| QT ambienti adiacenti TF            | 0       | 0        | 0     | 0      | 0       | 0        | 0        | 0      |
| QT terreno                          | 5465    | 4753     | 4302  | 1533   | 650     | 2598     | 4555     | 23855  |
| Qt extra flusso                     | 2685    | 2421     | 2659  | 1275   | 1422    | 2540     | 2665     | 15667  |
| QT totale                           | 20978   | 18332    | 17061 | 6405   | 3596    | 11236    | 17912    | 95520  |
| QV ventilazione                     | 8711    | 7577     | 6858  | 2443   | 1035    | 4141     | 7261     | 38026  |
| QL                                  | 29689   | 25909    | 23918 | 8848   | 4631    | 15378    | 25173    | 133546 |
| QI apporti interni                  | 6446    | 5822     | 6446  | 3119   | 3535    | 6238     | 6446     | 38053  |
| Qs apporti solari (opachi + trasp.) | 8384    | 9172     | 13225 | 7362   | 6760    | 8788     | 6837     | 60528  |
| Qse apporti serra                   | 0       | 0        | 0     | 0      | 0       | 0        | 0        | 0      |
| Rapporto apporti/dispersioni        | 0.500   | 0.579    | 0.822 | 1.185  | 2.223   | 0.977    | 0.528    |        |
| nu Fattore utilizzazione apporti    | 0.866   | 0.834    | 0.738 | 0.616  | 0.398   | 0.683    | 0.854    |        |
| Qn,h Fabbisogno riscaldamento       | 16851   | 13407    | 9398  | 2388   | 531     | 5119     | 13824    | 61517  |

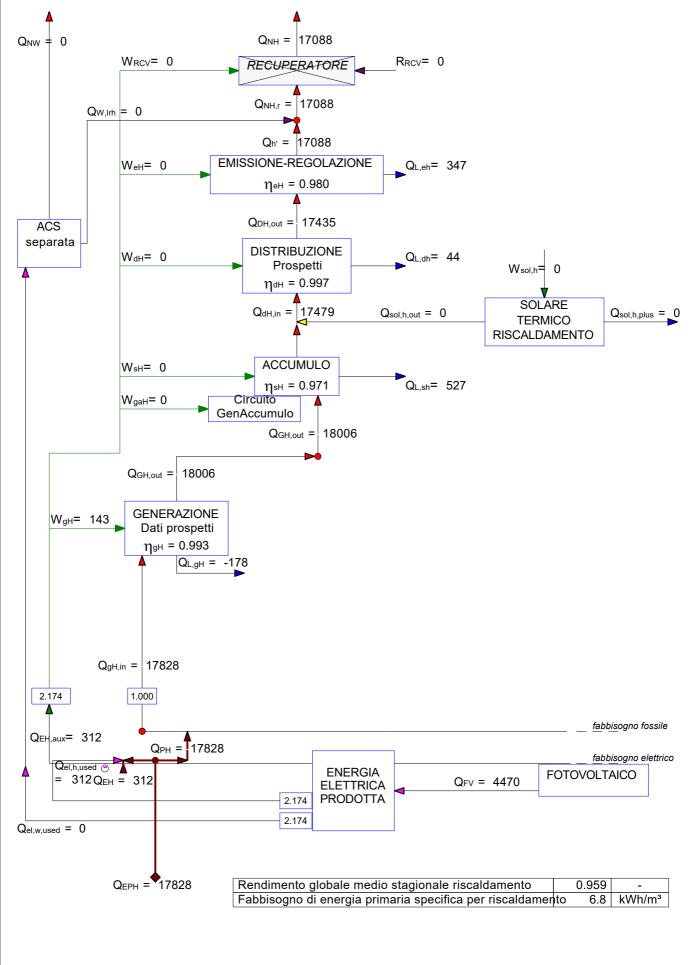

| <u> </u>                     |        |        |
|------------------------------|--------|--------|
| RISCALDAMENTO                | Totale | Unità  |
| Dispersione per trasmissione | 10.1   | kWh/m³ |
| Dispersione per ventilazione | 4.0    | kWh/m³ |
| Apporti serra                | 0.0    | kWh/m³ |
| Costante di tempo            | 16.1   | h      |
| Apporti interni              | 4.0    | kWh/m³ |
| Apporti solari               | 6.4    | kWh/m³ |
| Fabbisogno netto             | 6.5    | kWh/m³ |
| Volume lordo                 | 2616.0 | m³     |



# Dettaglio analitico e grafico del fabbisogno di energia netta convenzionale (in regime di RAFFRESCAMENTO)

| <b>ENERGIA [MJ]</b> | Gen   | Feb   | Mar   | Apr   | Mag   | Giu   | Lug   | Ago   | Set   | Ott   | Nov   | Dic   | Totali |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| QT opache           | 12041 | 10617 | 10393 | 7368  | 5595  | 2156  | 223   | 509   | 2226  | 4551  | 7840  | 10752 | 74271  |
| QT finestre         | 7033  | 6202  | 6071  | 4304  | 3268  | 1260  | 130   | 297   | 1300  | 2659  | 4580  | 6280  | 43384  |
| QT NR               | 874   | 770   | 754   | 535   | 406   | 156   | 16    | 37    | 161   | 330   | 569   | 780   | 5388   |
| QT TF               | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      |
| QT terreno          | 8498  | 7493  | 7335  | 5200  | 3948  | 1522  | 157   | 359   | 1571  | 3212  | 5533  | 7588  | 52415  |
| Qt extra f          | 2685  | 2421  | 2659  | 2550  | 2587  | 2454  | 2506  | 2510  | 2455  | 2592  | 2540  | 2665  | 30624  |
| QT totale           | 31130 | 27502 | 27213 | 19957 | 15803 | 7548  | 3032  | 3713  | 7713  | 13344 | 21061 | 28065 | 206082 |
| QV                  | 13546 | 11944 | 11692 | 8289  | 6294  | 2426  | 251   | 573   | 2504  | 5120  | 8820  | 12095 | 83553  |
| QL                  | 44676 | 39446 | 38906 | 28246 | 22097 | 9974  | 3282  | 4286  | 10217 | 18464 | 29881 | 40160 | 289635 |
| QI                  | 6446  | 5822  | 6446  | 6238  | 6446  | 6238  | 6446  | 6446  | 6238  | 6446  | 6238  | 6446  | 75898  |
| Qs                  | 8384  | 9172  | 13225 | 14724 | 19328 | 20240 | 21775 | 18580 | 15141 | 12327 | 8788  | 6837  | 116300 |
| Qse serra           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      |
| gamma               | 0.332 | 0.380 | 0.506 | 0.742 | 1.166 | 2.655 | 8.598 | 5.839 | 2.093 | 1.017 | 0.503 | 0.331 |        |
| nu                  | 0.332 | 0.380 | 0.504 | 0.716 | 0.932 | 0.999 | 1.000 | 1.000 | 0.997 | 0.882 | 0.501 | 0.331 |        |
| Qn,c                | 4     | 10    | 81    | 733   | 5185  | 16511 | 24939 | 20740 | 11192 | 2479  | 60    | 4     | 81938  |

| <u> </u>                     |        |        |
|------------------------------|--------|--------|
| RAFFRESCAMENTO               | Totale | Unità  |
| Dispersione per trasmissione | 21.9   | kWh/m³ |
| Dispersione per ventilazione | 8.9    | kWh/m³ |
| Costante di tempo            | 16.1   | h      |
| Apporti interni              | 8.1    | kWh/m³ |
| Apporti solari               | 12.3   | kWh/m³ |
| Apporti solari opaco         | 5.5    | kWh/m³ |
| Fabbisogno netto             | 8.7    | kWh/m³ |
| Volume lordo                 | 2616.0 | m³     |




BieFfe PROGETTAZIONI - Via Ippolito Nievo 16 - 06073 Corciano - Perugia - Tel-Fax 075/6978224 - bieffeprogettazioni@gmail.com

| SOTTOSISTEMA DI RECUPERO Assente                                                     |                       |             |                |
|--------------------------------------------------------------------------------------|-----------------------|-------------|----------------|
|                                                                                      |                       |             |                |
| SOTTOSISTEMA DI EMISSIONE Terminali emissione: Pannelli isolato annegato a pavimento |                       |             |                |
| Tipo di funzionamento: Sistema con funzionamento continuo                            |                       |             |                |
| Rendimento definito dall'utente :                                                    |                       |             |                |
| Rendimento di emissione                                                              | ηε                    | [-]         | 0.990          |
| Altezza del locale<br>Potenza elettrica ausiliari                                    | h<br>W <sub>aux</sub> | [m]<br>[kW] | 3.0<br>0.000   |
|                                                                                      | V V aux               | [[KVV]      | 0.000          |
| SOTTOSISTEMA DI REGOLAZIONE Tipo di regolazione: Climatico e singolo ambiente        |                       |             |                |
| Caratteristiche: PI o PID                                                            |                       |             |                |
| Rendimento definito dall'utente :                                                    |                       |             |                |
| Rendimento di regolazione                                                            | ηеН                   | [-]         | 0.990          |
| SOTTOSISTEMA DI DISTRIBUZIONE                                                        |                       |             |                |
| Metodo di calcolo: Prospetti<br>Tipo di impianto: Autonomo                           |                       |             |                |
| Numero di piani: 5 e più                                                             |                       |             |                |
| Anno di installazione: (Legge 10/91) dopo il 1993                                    |                       |             |                |
| Rendimento definito dall'utente :                                                    |                       |             |                |
| Rendimento di distribuzione  Rendimento di distribuzione corretto [1-(1-n)*0.25]     | ηd                    | [-]<br>[-]  | 0.990<br>0.998 |
| Tipo di funzionamento: Sistema con funzionamento continuo                            | ηd,cor                | [-]         | 0.998          |
| Potenza elettrica ausiliari                                                          | Waux                  | [kW]        | 0.000          |
| SOTTOSISTEMA DI ACCUMULO                                                             |                       |             |                |
| Sistema di accumulo presente :                                                       |                       |             | $\checkmark$   |
| Volume dell'accumulo: da 200 a 1500 litri                                            |                       |             |                |
| Coefficiente di perdita definito dall'utente :  Coefficiente di perdita              |                       | [W]         | 120.0          |
| Tipo di funzionamento: Sistema senza resistenza di backup                            |                       | []          | 1.20.0         |
| Potenza elettrica ausiliari                                                          | Waux                  | [kW]        | 0.000          |
| Ubicato in ambiente riscaldato :                                                     |                       |             | Ш              |
| SOTTOSISTEMA DI GENERAZIONE PRIORITARIO 1                                            |                       |             |                |
| Tipo generatore: Nessuno SOTTOSISTEMA DI GENERAZIONE PRIORITARIO 2                   |                       |             |                |
| Tipo generatore: Nessuno                                                             |                       |             |                |
| SOTTOSISTEMA DI GENERAZIONE                                                          |                       |             |                |
| Generatore con metodo di calcolo: Prospetti                                          |                       |             |                |

Progetto:

| Progetto:                                                                                               |                      |             |            |
|---------------------------------------------------------------------------------------------------------|----------------------|-------------|------------|
| STIMA10 - TFM 8.0.04d1                                                                                  |                      |             |            |
|                                                                                                         |                      |             |            |
|                                                                                                         |                      |             |            |
| IMPOSTAZIONI DEI SOTTOSISTEMI ENERGETICI PER IL CALCOLO DEL                                             |                      |             |            |
| FABBISOGNO ENERGETICO RISCALDAMENTO                                                                     |                      |             |            |
|                                                                                                         |                      |             |            |
| SOTTOSISTEMA DI GENERAZIONE                                                                             |                      |             |            |
| Metodo: Calcolo dati prospetti                                                                          |                      |             |            |
| Potenza termica nominale utile                                                                          | Pn                   | [kW]        | 88.0       |
| Potenza termica nominale minima utile                                                                   | P <sub>n,min</sub>   | [kW]        | 15.0       |
| RENDIMENTI GENERATORI PRECALCOLATI UNITS 11300-2                                                        |                      |             |            |
| Rendimento termico utile a pieno carico                                                                 | η100                 | [-]         | 0.980      |
| Rendimento termico utile a carico parziale                                                              | η30                  | [-]         | 1.070      |
| Tipo di caldaia : Caldaia a gas a condensazione                                                         |                      |             |            |
| Tipo di generatore (Prospetti 23 e 24) : 23d. Generatori di calore a gas a condensazione (4 stelle)     |                      |             |            |
| F1 : rapporto fra potenza del generatore installato e la potenza del progetto richies                   | sto [-] 2            | 2.07        |            |
| F2 : Generatore installato all'esterno                                                                  |                      | -           |            |
| F3 : Camino di altezza maggiore di 10 m                                                                 |                      |             |            |
| F4 : Temperatura media in caldaia maggiore di 65°C in condizioni di progetto F5 : Generatore monostadio |                      |             |            |
| F6 : Generatore monostadio                                                                              |                      |             |            |
| F7 : temperatura di ritorno in caldaia nel mese più freddo [°C] 40.0                                    |                      |             | _          |
| Delta T Fumi - Acqua ritorno a Pn: compreso tra 12°C e 24°C                                             |                      |             | _          |
| Potenze elettriche dichiarate:                                                                          | 1                    | 1-1-1-1     |            |
| Potenza elettrica degli ausiliari a pieno carico  Potenza elettrica degli ausiliari a carico intermedio | W <sub>aux,Pin</sub> | [W]         | 386<br>129 |
| Potenza elettrica degli ausiliari a carico intermedio  Potenza elettrica degli ausiliari a carico nullo | W aux,Pint           | [W]         | 129        |
|                                                                                                         | • • aux,i o          | [[]         |            |
| VETTORE ENERGETICO Combustibile: Gas naturale                                                           |                      |             |            |
| Potere calorifico combustibile                                                                          | DOL                  | [kcal/m³]   | 0050       |
|                                                                                                         | PCI                  | ircai/iii i | 8250 🗆     |
|                                                                                                         | PCI                  | [KCal/III ] | 8250       |
|                                                                                                         | PCI                  | [KCal/III ] | 8250       |
|                                                                                                         | PCI                  | [KCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [KCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [KCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [KCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III]  | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III]  | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III]  | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III]  | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |
|                                                                                                         | PCI                  | [RCdI/III ] | 8250       |

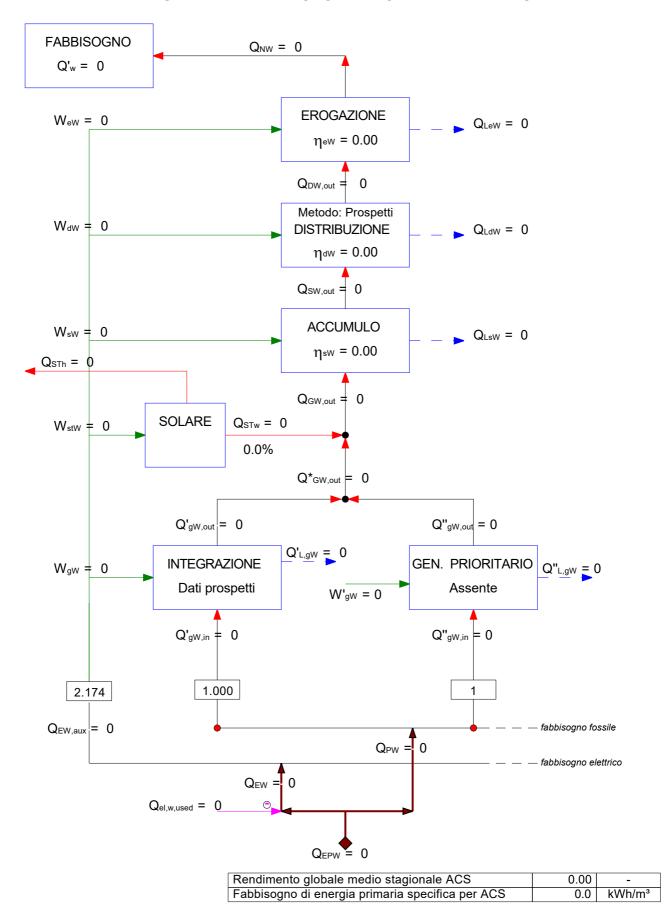


#### **ENERGIA PRIMARIA RISCALDAMENTO**

### Legenda:

 $Q_{NH}$ [kWh] fabbisogno termico per il riscaldamento dell'involucro fabbisogno energetico per l'acqua calda sanitaria Q<sub>NW</sub> [kWh]  $W_{\text{RCV}}$ [kWh] fabbisogno di energia elettrica del sistema di ventilazione ηκον [-] efficienza del recuperatore di calore **R**RCV [kWh] contributo di un eventuale recuperatore di calore [kWh] fab. termico riscaldamento involucro corretto dal contributo eventuale recuperatore  $Q_{NH,r}$ perdite recuperate dal sistema di produzione acqua calda sanitaria  $Q_{W,lrh}$ [kWh]  $Q_{h'}$ [kWh] Qh' = QNH.r - QW.lrh $W_{eH}$ [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di emissione [-] rendimento del sistema di emissione ηеН [kWh] perdita termica del sistema di emissione Q<sub>L,eH</sub> energia termica richiesta al sistema di distribuzione Q<sub>dH.out</sub> [kWh] [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di distribuzione  $W_{dH}$ rendimento del sistema di distribuzione  $\eta$ dH [-]  $Q_{L,dH}$ [kWh] perdita termica del sistema di distribuzione  $Q_{dH,in}$ [kWh] energia termica in ingresso al sistema di distribuzione fabbisogno di energia elettrica degli ausiliari del solare termico  $W_{sol,h}$ [kWh] [kWh] energia termica prodotta dal solare termico Q<sub>sol,h,out</sub>  $Q_{sol,h,plus}$ [kWh] energia termica prodotta in surplus dal solare termico Q<sub>sw.in</sub> [kWh] energia termica prodotta dal solare termico in ingresso all'impianto ACS  $W_{sH}$ [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di accumulo rendimento del sistema di accumulo ηsΗ [-] [kWh] perdita termica del sistema di accumulo  $Q_{L,sH}$  $W_{gaH}$ [kWh] fabbisogno di energia elettrica degli ausiliari del circuito del sistema di accumulo energia termica richiesta al sistema di generazione per riscaldamento QgH,out [kWh] Q<sub>gH,out</sub> [kWh] energia termica prodotta dal sistema di generazione/integrazione  $Q'_{gH,out}$ energia termica prodotta dal primo generatore prioritario [kWh] Q" gH,out [kWh] energia termica prodotta dal secondo generatore prioritario  $W_{aH}$ [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di generazione/integrazione W'gH [kWh] fabbisogno di energia elettrica degli ausiliari del primo sistema di generazione prioritario W"<sub>gH</sub> [kWh] fabbisogno di energia elettrica degli ausiliari del secondo sistema di generazione prioritario rendimento del sistema di generazione/integrazione [-]  $\eta$ gH [kWh] perdita termica del sistema di generazione/integrazione  $Q_{L,gH}$ perdita termica del primo generatore prioritario  $Q_{L,g'H}$ [kWh]  $Q_{L,g"H}$ [kWh] perdita termica del secondo generatore prioritario Q<sub>CG,el,exp</sub> [kWh] energia elettrica esportata del cogeneratore  $Q_{gH,in}$ [kWh] energia in ingresso al generatore/integrazione energia in ingresso al primo generatore prioritario Q'gH,in [kWh] energia in ingresso al secondo generatore prioritario Q" gH,in [kWh]  $Q_{FV}$ [kWh] contributo energetico dovuto agli impianti solari fotovoltaici efficienza media del pannello dell'impianto fotovoltaico ηεν [-]  $Q_{WD}$ [kWh] contributo energetico dovuto agli impianti eolici energia elettrica compensata dall'energia elettrica prodotta dall'impianto Q<sub>el,h,used</sub> [kWh] [kWh] energia primaria compensata dall'energia elettrica prodotta dall'impianto Q<sub>p,h,used</sub> [kWh] energia elettrica esportata dall'impianto Q<sub>el,exp,h</sub>

energia primaria in ingresso agli ausiliari Q<sub>EH,aux</sub> [kWh]


 $Q_{EH}$ [kWh] energia primaria elettrica  $Q_{PH}$ [kWh] energia primaria fossile

fabbisogno di energia primaria per il riscaldamento dell'involucro edilizio **Q**EPH [kWh]

| FABBISOGNO ENERGETICO ACS                                                                                                                                                                                                                       |                                    |                  | _                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|-------------------------|
| MPIANTO COMBINATO (ACS e climatizzazione invernale)                                                                                                                                                                                             |                                    |                  | Ц                       |
| FABBISOGNO ACS                                                                                                                                                                                                                                  |                                    |                  |                         |
| Edifici non residenziali - Tipo: Edifici adibiti ad attivita` scolastiche                                                                                                                                                                       | _                                  | Tr.1             | 8                       |
| Fattore medio di occupazione giornaliera Indice di affollamento                                                                                                                                                                                 | F <sub>∞</sub>                     | [-]<br>[pers/m²] | 0.50                    |
| Fattore di correzione                                                                                                                                                                                                                           | f <sub>cor</sub>                   | [-]              | 0.30                    |
|                                                                                                                                                                                                                                                 | Mag Giu                            | Lug Ago Set      | Ott Nov Dic             |
| Giorni 31 28 31 30                                                                                                                                                                                                                              | 31 30                              | 31 31 30         | 31 30 31                |
| Temperatura di erogazione                                                                                                                                                                                                                       | θer                                | [°C]             | 40.0                    |
| Temperatura di ingresso dell'acqua fredda Area utile totale                                                                                                                                                                                     | θ <sub>o</sub>                     | [°C]             | 15.0<br>601.7           |
| Fabbisogno specifico definito dall'utente :                                                                                                                                                                                                     | ΙΛ                                 | ן נייי           |                         |
| Fabbisogno specifico                                                                                                                                                                                                                            | Q'w                                | [Wh/pers.giorno] | 0                       |
| SOTTOSISTEMA DI EROGAZIONE                                                                                                                                                                                                                      | ]                                  |                  |                         |
| Rendimento di erogazione                                                                                                                                                                                                                        | ηε                                 | [-]              | 0.950                   |
| Resistenza elettrica per riscaldamento istantaneo ACS:                                                                                                                                                                                          | 1110                               | 16.3             |                         |
| Potenza elettrica ausiliari                                                                                                                                                                                                                     | Waux                               | [kW]             | 0.000                   |
| SOTTOSISTEMA DI DISTRIBUZIONE                                                                                                                                                                                                                   | ]                                  |                  |                         |
| Metodo di calcolo: Prospetti                                                                                                                                                                                                                    |                                    |                  |                         |
| Sistema di distribuzione: ACS Installato dopo la 373 - ACS con ricircolo                                                                                                                                                                        | ס                                  |                  |                         |
| Rendimento definito dall'utente :                                                                                                                                                                                                               |                                    |                  | П                       |
| Rendimento delinito dall'utente : Rendimento di distribuzione                                                                                                                                                                                   | nd                                 | [-]              | 0.850                   |
| Potenza elettrica ausiliari                                                                                                                                                                                                                     | η <sub>d</sub><br>W <sub>aux</sub> | [kW]             | 0.000                   |
| SOTTOSISTEMA DI ACCUMULO                                                                                                                                                                                                                        | ]                                  |                  |                         |
| Sistema di accumulo presente :                                                                                                                                                                                                                  |                                    |                  | $\overline{\mathbf{A}}$ |
| Volume dell'accumulo: da 200 a 1500 litri                                                                                                                                                                                                       |                                    |                  |                         |
| Coefficiente di perdita definito dall'utente :                                                                                                                                                                                                  |                                    |                  |                         |
| Coefficiente di perdita                                                                                                                                                                                                                         |                                    | [W]              | 120.0                   |
| Tipo di funzionamento: Sistema senza resistenza di backup Potenza elettrica ausiliari                                                                                                                                                           | Waux                               | [kW]             | 0.000                   |
| Ubicato in ambiente riscaldato :                                                                                                                                                                                                                | v v aux                            | [[KVV]           |                         |
|                                                                                                                                                                                                                                                 | <br>1                              |                  |                         |
| SOLARE TERMICO                                                                                                                                                                                                                                  |                                    |                  | $\overline{\mathbf{V}}$ |
|                                                                                                                                                                                                                                                 |                                    |                  |                         |
|                                                                                                                                                                                                                                                 |                                    |                  |                         |
| Tipo di utilizzo: solo acs                                                                                                                                                                                                                      | 1                                  |                  |                         |
| Tipo di utilizzo: solo acs SOTTOSISTEMA DI GENERAZIONE                                                                                                                                                                                          |                                    |                  |                         |
| Tipo di utilizzo: solo acs SOTTOSISTEMA DI GENERAZIONE Metodo di calcolo: Prospetti                                                                                                                                                             | senza pilo                         | ota              |                         |
| Tipo di utilizzo: solo acs  SOTTOSISTEMA DI GENERAZIONE  Metodo di calcolo: Prospetti  Tipo di apparecchio - Versione: Generatore a gas ad accumulo - Tipo C  Rendimento definito dall'utente :                                                 | senza pilo                         | ota              |                         |
| Solare termico presente Tipo di utilizzo: solo acs  SOTTOSISTEMA DI GENERAZIONE  Metodo di calcolo: Prospetti Tipo di apparecchio - Versione: Generatore a gas ad accumulo - Tipo C Rendimento definito dall'utente : Rendimento di generazione | ηց                                 | [-]              | 0.750                   |
| Tipo di utilizzo: solo acs  SOTTOSISTEMA DI GENERAZIONE  Metodo di calcolo: Prospetti  Tipo di apparecchio - Versione: Generatore a gas ad accumulo - Tipo C  Rendimento definito dall'utente :  Rendimento di generazione  Potenza nominale    | η <sub>g</sub><br>P <sub>n</sub>   | [-]<br>[kW]      | 0.000                   |
| Tipo di utilizzo: solo acs  SOTTOSISTEMA DI GENERAZIONE  Metodo di calcolo: Prospetti  Tipo di apparecchio - Versione: Generatore a gas ad accumulo - Tipo C  Rendimento definito dall'utente :  Rendimento di generazione                      | ηց                                 | [-]              |                         |

Progetto:

### SCHEMA DI CALCOLO ENERGIA PRIMARIA ACS



#### **ENERGIA PRIMARIA ACS**

### Legenda:

Q'w fabbisogno energetico specifico giornaliero per la produzione ACS (al m² o per persona) [Wh/g] fabbisogno energetico per l'acqua calda sanitaria Q<sub>NW</sub> [kWh] WeW fabbisogno di energia elettrica degli ausiliari del sistema di erogazione [kWh] ηeW [-] rendimento del sistema di erogazione  $Q_{L,eW}$ [kWh] perdita termica del sistema di erogazione [kWh] energia termica richiesta al sistema di distribuzione  $Q_{dW,out}$  $W_{\text{dW}}$ [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di distribuzione rendimento del sistema di distribuzione ndW [-] [kWh] perdita termica del sistema di distribuzione  $Q_{L,dW}$  $Q_{\text{sW,out}}$ [kWh] energia termica richiesta al sistema di accumulo fabbisogno di energia elettrica degli ausiliari del sistema di accumulo  $W_{sW}$ [kWh] ηsW rendimento del sistema di accumulo [-] [kWh] perdita termica del sistema di accumulo  $Q_{L,sW}$ [kWh] energia termica prodotta dal kit di recupero della pompa di calore endotermica Qrke energia termica richiesta al sistema di generazione Q<sub>gW,out</sub> [kWh] Q'gW,out [kWh] energia termica prodotta dal sistema di generazione/integrazione energia termica prodotta dal generatore prioritario Q" gW,out [kWh]  $W_{qW}$ [kWh] fabbisogno di energia elettrica degli ausiliari del generatore di integrazione W'<sub>qW</sub> fabbisogno di energia elettrica degli ausiliari del generatore prioritario [kWh] Q'<sub>L,qW</sub> [kWh] perdita termica del sistema di generazione/integrazione Q"<sub>L,qW</sub> [kWh] perdita termica del sistema di generazione prioritario energia in ingresso al generatore/integrazione Q'gW,in [kWh] Q" gW,in energia in ingresso al generatore prioritario [kWh] energia prodotta dal solare termico per la soddisfazione del fabbisogno ACS Qstw [kWh] energia prodotta dal solare termico per la soddisfazione del fabbisogno riscaldamento QsTh [kWh] Q<sub>el,w,used</sub> [kWh] energia elettrica compensata dall'energia elettrica prodotta dall'impianto energia primaria compensata dall'energia elettrica prodotta dall'impianto Q<sub>p,w,used</sub> [kWh] [kWh] energia elettrica esportata dall'impianto Q<sub>el,exp,w</sub> Q<sub>EW.aux</sub> [kWh] energia primaria in ingresso agli ausiliari  $Q_{EW}$ [kWh] energia primaria elettrica **Q**PW [kWh] energia primaria fossile **Q**EPw [kWh] fabbisogno di energia primaria per la produzione di acqua calda sanitaria

#### **DETTAGLIO DI CALCOLO QUOTA RINNOVABILE**

Calcolo secondo indicazioni metodologiche per l'applicazione dei requisiti della DGR 1366/2011 in materia di FER del 1 Giugno 2013 Rev 3 - Raccomandazione CTI 14 Feb 2013

Energia primaria totale e rinnovabile - ripartizione per servizio e vettore [kWh]. H: riscaldamento; V: ventilazione; W: acqua calda sanitaria; C: raffrescamento; L: illuminazione.

| Vettore finale    |       | Servizio (per edificio) |   |   |   | Totale vettori "off site" |             |                 |  |
|-------------------|-------|-------------------------|---|---|---|---------------------------|-------------|-----------------|--|
| "off site"        | Н     | V                       | W | С | L | Primaria                  | Primaria    | Primaria        |  |
|                   |       |                         |   |   |   | totale                    | rinnovabile | non rinnovabile |  |
| Gas               | 17828 |                         |   |   |   | 17828                     |             | 17828           |  |
| GPL               |       |                         |   |   |   |                           |             |                 |  |
| Gasolio           |       |                         |   |   |   |                           |             |                 |  |
| Olio combustibile |       |                         |   |   |   |                           |             |                 |  |
| Biomassa          |       |                         |   |   |   |                           |             |                 |  |
| Teleriscaldamento |       |                         |   |   |   |                           |             |                 |  |
| Energia elettrica | 312   |                         |   |   |   | 312                       |             | 312             |  |
| Totali            | 18139 |                         |   |   |   | A= 18139                  | B= 0        | 18139           |  |

| Fonte energetica |     | Serviz | io (per e | dificio) |   | Т        | otali fonti "on si | te"             |
|------------------|-----|--------|-----------|----------|---|----------|--------------------|-----------------|
| "on site"        | Н   | V      | W         | С        | L | Primaria | Primaria           | Primaria        |
|                  |     |        |           |          |   | totale   | rinnovabile        | non rinnovabile |
| Fotovoltaico     | 312 |        |           |          |   |          | 312                |                 |
| Solare           |     |        |           |          |   |          |                    |                 |
| Pompa di calore  |     |        |           |          |   |          |                    |                 |
| Cogenerazione    |     |        |           |          |   |          |                    |                 |
| Altro            |     |        |           |          |   |          |                    |                 |
| Totali           | 312 |        |           |          |   | D= 0     | E= 312             |                 |

| Quota percentuale di copertura da FER $QR_{gl} = (B+E)/(A+D) = Q_{P,ren,gl,an} / (Q_{P,ren,gl,an} + Q_{P,nren,gl,an})$ 1.7 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $  QR  = (B+F)/(A+D) = Q_0 + (Q_0 + Q_0 +$ |       |
| The state of the s |       |
| Energia primaria globale da FER Q <sub>Prenglan</sub> 312 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /anno |
| Energia primaria non rinnovabile globale Q <sub>P,nren,gl,an</sub> 17828 kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /anno |
| Quota percentuale di copertura da FER per sola ACS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| $QR_{W} = Q_{P,ren,W,an} / (Q_{P,ren,W,an} + Q_{P,nren,W,an})$ $0.0 \%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Energia primaria da FER per sola ACS Q <sub>P.ren.W.an</sub> 0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /anno |
| Energia primaria non rinnovabile per sola ACS Q <sub>P,nren,W,an</sub> 0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /anno |
| Quota percentuale di copertura da FER per climatizzazione invernale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| $QR_{H} = Q_{P,ren,H,an} / (Q_{P,ren,H,an} + Q_{P,nren,H,an})$ 1.7 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Energia primaria da FER per climatizzazione invernale Q <sub>Pren Han</sub> 312 kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /anno |
| Energia primaria non rinnovabile per climatizzazione invernale Q <sub>P,nren,H,an</sub> 17828 kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /anno |
| Fabbisogno globale di energia elettrica Q <sub>elinan</sub> 143 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /anno |
| Energia elettrica utilizzata prodotta mediante FER Q elused glan 143 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /anno |
| Energia elettrica consegnata lorda Q <sub>el,del,gross,an</sub> -0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anno  |
| Percentuale di copertura del fabbisogno annuo 100.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |

Legenda: Q: Fabbisogno di energia; gl: Globale; P: Primaria; ren: Rinnovabile; nren: Non rinnovabile; an: Anno; el: Elettrica; in: Entrante; used: Utilizzata; del: Consegnata; gross: Lorda.

## VERIFICA RISPETTO REQUISITI Allegato 3 Digs n°28 - 3 marzo 2011

| %obbligo   | %  | 35.0 | Note Obbligo copertura: |
|------------|----|------|-------------------------|
| %effettiva | %  | 1.7  |                         |
| Pobbligo   | kW | 0.0  | Note Potenza obbligo:   |
| Peffettiva | kW | 3.9  |                         |

$$EP_{tot} \leqslant EP_{\text{tot,lim}} \cdot \left[ \frac{\frac{\%_{\text{effettiva}}}{\%_{\text{obbligo}}} + \frac{P_{\text{effettiva}}}{P_{\text{obbligo}}}}{4} \right]$$

$$EP_{\text{tot}} = 6.8 <= 9.6 = EP_{\text{tot,lim,punto8}}$$
Requisito non richiesto